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The objective of the present program is to study the structure and
response of steady and unsteady laminar premixed and nonpremixed
flames in reduced and elevated pressure environments through (a)
ron-intrusive experimentation, (b) computational simulation using N
detailed flame and kinetic codes, and (c) asymptotic analysis with
reduced kinetic mechanisms. During the reporting period progress
has been made in the following projects: (1) a theoretical and
experimental study of wunsteady diffusion flames; (2) a
computational and experimental study of hydroge /air diffusion
flames at sub- and super-atmospheric pressures; (3) an asymptotic
analysis of the structure of premixed flames with volumetric heat
loss; (4) asymptotic analyses of ignition in the supersonic
hydrogen/air mixing layer with reduced mechanisms; (5) a new
numerical algorithm for generating the ignition-extinction S-
curves. A total of three reprints are appended.
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1. Introduction

The objective of the present program is to study the structure and
response of steady and unsteady laminar premixed and nonpremixed
flames in reduced and elevated pressure environments through (a)
non-intrusive experimentation, (b) computational simulation using
detailed flame and kinetic codes, and (c) asymptotic analysis with
reduced kinetic mechanisms. During the reporting period progress
has been made in the following projects: (1) a theoretital and
experimental study of unsteady diffusion flames; (2) a
computaticnal and experimental study of hydrogen/air diffusion
flames at sub- and super-atmospheric pressures; (3) an asymptotic
analysis of the structure of premixed flames with volumetric heat
loss; (4) asymptotic analyses of ignition in the supersonic
hydrogen/air mixing layer with reduced mechanisms; (5) a new
numerical algorithm for generating the ignition-extinction S-
curves. These accomplishements are briefly discused in the
following.

2. Studies on Unsteady Diffusion Flames

A crucial influence on the flame behavior which so far has not
been adequately addressed is the effect of unsteadiness of the
environment on the flame behavior. This issue is of particular
relevance to the modeling of turbulent flames through the concept
of 1laminar flamelets. These flamelets are subjected to
fluctuating flows with various intensities of straining, and it is
reasonable to expect that the flame would respond differently in
an oscillating strained flow field than in a steady strained flow
field.

During the reporting period we have analyzed the response of
a counterflow diffusion flame subjected to an oscillating strain
rate, using large activation energy asymptotics. The
characteristic oscillation time of practical interest is found to
be of the same order as the characteristic diffusion time of the
flame, so that the flame structure consists of a quasi-steady
reactive-diffusive layer embedded in the outer unsteady-

convective-diffusive zones. A linear analysis is conducted by
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assuming that the amplitude of the strain rate oscillation is
small relative to the mean strain rate.

Figure 1 shows the real parts of the fluctuations in heat
release as a function of the frequency of oscillation, when the
mean flame is either near equilibrium or near extinction. It has
been found that the flame response is controlled mainly by two
effects: (a) tne response of the convective mass flux into the
reaction sheet, which is directly related to the flow-field
variation applied at the boundary, and (b) the response of the
reaction sheet to adjust the reduced residence time due to finite-
rate chemistry. For flames near equilibrium, the former effect
tends to be dominant, so that the response of the net heat release
is in phase (i.e. positive real) with the strain rate oscillation.
For flames near extinction, however, the finite-rate chemistry
effect overtakes the fluid-dynamic effect such that increasing
strain rate leads to a reduction of the reactivity of the flame
during the oscillatory cycle. As such, the net heat release
response of the near-extinction flame becomes out of phase with
the strain rate oscillation in the sense of the Rayleigh’s
criterion. Results of the present study suggest the possibility
that the unsteady characteristics of the near-extinction diffusion
flame can be significantly different from those in the Burke-
Schumann limit.

A parallel experimental study is also in progress. Figure 2
shows the schematic of the experimental setup. To achieve the
instantaneous measurement of the unsteady counterflow flame, the

laser beam is modulated by an optical chopper at the applied

perturbation frequency. Then the signal is delayed and sent to
the loudspeakers, which generate the acoustic perturbation of the -
flow in the nozzle. By comparing the signal sent to the .X:
loudspeakers with the chopped laser signal detected by the ?3
photodiode, the entire applied sine wave can be mapped out. We ig
shall measure the instantaneous snapshots of the strain rate field .
—_—
and flame responses in order to provide more deterministic
——

information of the unsteady flame phenomena.
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The theoretical part of this work is reported in Publication
No. 1.

3. Pressure Effects on Extinction of Hydrogen-Air

Diffusion Flames

Recent interests in high-speed aero-propulsion have 1led to
considerable research on hydrogen/oxygen chemistry, as well as its
coupling to fluid flows. Becauée of the high-speed nature of the
flow, the available residence time for mixing and chemical
reaction is significantly reduced. Furthermore, the combustion
chamber within aero-engines not only operates at higher pressures,
but the chamber pressure can also undergo strong fluctuations such
that chemical kinetics and the flame behavior can be significantly
modified from those at the atmospheric condition. Consequently,
it is of importance to understand the ignition and extinction
phenomena involving hydrogen/oxygen mixtures wunder variable
pressures.

We have conducted LDV measurements of local extinction strain
rates of nonpremixed counterflow flames of diluted hydrogen
against air, at pressures of 0.5 to 1.0 atmosphere. The measured
data compare well with results obtained from computational
simulation with detailed chemistry and transport. We have
subsequently performed additional computational studies of the
pressure effect on flame extinction. Figure 3 shows extinction
flame temperatures calculated for a 13% hydrogen mixture as a
function of the system pressure. The relationship of extinction
temperatures with pressure for this system exhibits the familiar
non-monotonic "Z" shaped dependency as observed for the
homogeneous hydrogen/oxygen explosion limits. This implies that
an increase in pressure could render a mixture to change from an
extinguished state, to a burning state, and back to an
extinguished state. This behavior is explained on the basis of
the intrinsic chain branching~termination kinetics of hydrogen
oxidation. _

This work is reported in Publication No. 2.




4. Asymptotic Analysis of Premixed Flames with Volumetric
Heat Loss

A classical model problem for the study of premixed flame
extinction is that of Spalding, who analyzed a one-dimensional
freely-propagating flame with a temperature-sensitive one-step
overall reaction and radiative heat 1loss. More sophisticated
analyses have since been performed using one-step chemistry and
activation energy asymptotics. These studies predict that
extinction occurs when the ratio of the burning rate to its
adiabatic value is reduced to e~1/2 = 0.61, a result that is
insensitive to the nature of the heat loss. Subsequent numerical
computations that consider detailed transport and chemistry also
predict extinction when the burning rate is reduced to roughly 60%
of its adiabatic value, suggesting that this value may represent a
universal constant, independent of reaction and loss mechanisms.

In order to gain a better understanding of the role of
dominant kinetic parameters, we have revisited this classical
problem and have performed asymptotic analyses with multi-step
reaction mechanisms. We first employed the two-step 2Zel'dovich-
Lifidn mechanism which consists of a branching reaction and a
competing recombination reaction, thus capturing the chain nature
of real flames. The analysis again predicts the normalized burning
rate at extinction to be e-1/2, This work is reported in
Publication No. 3.

We have also made considerable progress in understanding the
extinction characteristics of nonadiabatic methane/air flames by
considering a reduced reaction mechanism that has been
systematically derived from larger detailed mechanisms. Thus the
reduced mechanism contains many important chemical parameters that
are dominant in the chemistry of "“real" flames. Extinction
conditions were found explicitly in terms of these parameters.
Results show that the critical wvalue of the burning rate at
extinction, though not a universal constant, varies only slightly,
in the range between 0.61 and 0.64. In figure 4 we have plotted
the nondimensional burning rate as a function of the loss
parameter. At the (extinction) turning point, the burning rate is
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nearly the same for all curves, but the critical value of the heat
loss parameter is seen to be less than that for one-step models.
The corresponding reduction in flame temperature needed for
extinction is therefore substantially less than that predicted by
one-step models. :

This work is reported in Publication Nos. 4 and 5.

5. Ignition in the Supersonic Hydrogen/Air Mixing ZLayer
The development of the scramjet engine for supersonic propulsion
and the scramaccelerator for hypervelocity projectile launching
has renewed interest in supersonic combustion. Fundamental
studies such as ignition within chemically-reactive supersonic
boundary layer flows can provide better understanding of the key
factors in developing supersonic combustors. In our previous
study (Publication No. 6) with one-step reaction chemistry model,
several distinct ignition situations were identified, and it was
shown that ignition can be greatly facilitated by use of the
kinetic energy of the high~speed flow through viscous heating. 1In
the present study we take one step further and consider the more
realistic hydrogen/air mixing layer using reduced mechanisms. In
particular, two distinct reduced mechanisms are identified
depending on the maximum characteristic ignition temperature (T*)
relative to the crossover temperature (T.), at which the rates of
the crucial H-02 chain branching and termination reactions are
equal. Each regime is further subdivided into two distinct cases,
namely the hot stream (B > M) case and the viscous heating (B < W)

case, depending on the relative dominance of the external and
internal ignition sources, where P and B are parameters
respectively representing the extent of external heating to
internal viscous heating. These four cases are analyzed
separately using asymptotic technique, and the analysis properly
captures the ignition process in a well-defined manner.

Figure 5 shows the minimum ignition distance as a function of
the flow Mach number. Although the gross trend is similar to that
of the one-step analysis, it is .clearly shown that the system

response is significantly enriched when realistic chemistry is
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properly taken into account. For example, ignition in the low
temperature regime (I, II) is controlled by a large activation
energy process, so that the ignition distance is more sensitive to
its ‘characteristic temperature than that in the high temperature
regime (III, 1IV). In Fig. 6, it is shown that the ignition
distance varies non-monotonically with the system pressure in the
manner of the well-known hydrogen/oxygen explosion limits, thereby
further substantiating the importance of chemical chain mechanisms
in this class of chemically-reacting boundary layer flows.
This work is reported in Publication No. 7.

6. Numerical Algorithm for Generating S-Curves

Most combustion phenomena are intrinsically nonlinear because of
the associated <chain mechanisms and Arrhenius kinetics.
Consequently, theoretical studies of their steady—étate behavior
frequently yield multiple solutions connected by turning points
when a system response is plotted versus an imposed system
parameter. A prominent example is the S-curve representation of
quasi~one~dimensional strained flames which results when a flame
response such as its maximum temperature is plotted versus the
system strain rate. Specifically, the lower branch of the S-curve
represents weakly-reactive states, the middle branch unstable
solutions, and the upper branch vigorously-burning states. As
such, the 1lower and upper turning points can be respectively
defined as the ignition and extinction states of the system.
Identification and description of these critical states of
transition therefore commands both fundamental and practical
interest.

When numerical solution is sought for the S-curve response,
especiallj with detailed chemistry, difficulty is encounters as
one attempts to continue the calculation from, say, the upper
branch to the middle branch by negotiating the extinction turning
point because the Jacobian matrix used in the Newton method
becomes singular at the turning point. Consequently, the
arclength continuation method has been applied to trace through




the ignition and extinction turning points in a number of studies
on strained flames.

While the arclength continuation method is clearly a valuable
approach in generating the S-curve, special skill apparently is
still needed in its implementation and as ‘a result its use has not
been wide spread. In this study we have developed a new, flame-
controlling continuation method. Using the counterflow premixed
and diffusion flames as examples, the method capitalizes on the
distinct nature of the profile and location of the scalars of the
flame properties, such as the temperature and species
concentrations, in response to changes in the flow strain rate.
Thus instead of using the strain rate as an imposed parameter and
the scalars as the flame responses, the values of a flame scalar
at a give location is used as an internal boundary condition while
the strain rate becomes the flame response. The method appears to
be fairly simple in implementation and efficient and robust in
execution, especially in negotiating the turning points.

This work is reported in Phblication No. 8.
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Laminar flame propagation with volumetric heat
loss and chain branching-termination reactions
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(Received 23 December 1992 and in final form 13 April 1993)

Abstract—The steady propagation of the planar laminar premixed flame in the doubly-infinite domain,
with chain branching-termination reactions and weak volumetric heat loss, is studied using activation
energy asympiotics. Two flame propagation regimes are identified and analyzed: a fast recombination
regime in which the recombination reaction occurs in a steady-state manner with the high-activation-
energy branching reaction in an overall reaction region which is much thinner than that of diffusion, and
anintermediate recombination regime in which the recombination region is much thicker than the branching
region but much thinner than the diffusion region. The analysis yields the characieristic dual solution,

extinction turning point flame response. and shows that the flame propagation speed is reduced to ¢

-12

of the adiabatic value for both reaction mechanisms. The generality of this limit flame speed is noted.

1. INTRODUCTION

A cLASSICAL model problem for the study of premixed
flame extinction is thai of Spalding {1]. who analy2ed
the one-dimensional freely-propagating flame with

temperature sensitive one-step overall reaction and.

radiative heat loss. By letting these processes assume
power-law temperature variations. with the exponents
being 11 and 4 for the reaction rate and heat loss rate
such that the former is more temperature sensitive
than the latter. the analysis vields an extinction turn-
ing point. at which the normalized flame speed
Sies = Sieu' S 18 0.504. where s, is the flame speed and
s/ the adiabatic. laminar flame speed. and the sub-
script ‘ex” designates the extinction state. A more rig-
orous analysis (2] of the Spalding problem by using
activalion energy asympiotics and for weak. O(¢) con-
ductive heat loss subsequently yielded 5. =e ',
whicll is about 0.607. and a suitably-scaled heat loss
rate L = e~ at the state of extinciion. where ¢ is the
reciprocal of the nondimensional activation energy to
be defined later. The same result was shown to also
hold [3] for a general O(&) volumetric heat loss func-
tion.

Recently. Sibulkin and co-workers [4-6) reported
numerical solutions of transient planar and out-
wardly-propagating lean methane air flame. aliowing
for radiative heat loss but with constant transport
properiies and one-siep overall reaction. It was shown
that at the limit of propagation §; again assumed a
valuc around 0.6. Lakshmisha es al. [7), and Law
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and Egolfopoulos [8] extended these calculations to
include variable properties and detailed chemistry,
and further demonstrated the near-constancy of this
value. Compared 1o previous analytical studies, these
computational results are significant because they
indicate the possibility that at the extinction limit the
flame speed is always reduced to about 60% of its
adiabatic value. being very insensitive both 10 the
reaction mechanism. whether it is one-step or detailed,
and to the loss mechanism. whether it is conductive
or radiative. as long as it is O(¢) and volumetric in
nature.

The objective of the present study is to provide a
fairly general proof of the above possibility based
on activation energy asympiotics. Recognizing that
previous analytical studies mostly invoive a one-step
large activation energy reaction. which obviously can-
not capture the inherently-important chain branching
and termination nature of realistic reaction schemes,
we shall employ the Zel'dovich-Lifian two-step mech-
anism [9. 10]. which consists of a branching reaction
and a competing recombination (termination) reac-
tion. This is believed 10 be the simplest representation
of the chain nature of realistic reaction mechanisms.
A general, O(z) volumetric heat loss function will be
used in the analysis.

The system 1o be analyzed is formulated in the next
section. It will be shown that there are two situations
of interest. which respectively involve fast and inter-
mediate recombination reaction rates. These two situ-
ations are scparately analvzed in Sections 3 and 4.
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NOMENCLATURE
a.b.c integration constants ¥ Euler’s constant
B pre-exponential factor é small parameter representing the
' specific heat at constant pressure relative thickness of the
D mass diffusion coefficient recombination region to the preheat
Da Damké&hler number region -
E activation energy £ small parameter of expansion, defined
S mass flux through the flame or the flame as T2 /E
propagation rate n compressed coordinate defined as
! flame propagation rate in the adiabatic £x
limit © temperature perturbation in the
F rate controlling reactant (fuel) recombination region
H temperature-dependent volumetric ] temperature perturbation in the
heat loss function branching region
H, Heaviside function defined after A burning rate eigenvalue
equation (A24) P thermal conductivity
L heat loss coefficient ¢ stretched coordinate defined as X/e
L conductive heat loss coefficient P density
Ly radiative heat loss coefficient ¢ fuel concentration perturbation in the
Le Lewis number branching region
M third body of collision needed for b 4 radical concentration in the
recombination recombination region
) combustion product v radical concentration in the branching
p pressure region
g heat of combustion per unit mass of fuel o reaction rate function.
R radical species
R universal gas constant Subscripts
S, flame speed ex the extinction state
5P adiabatic. Jaminar flame speed F fuel
T temperature M third body of collision needed for
T, adiabatic flame temperature recombination
I leading order flame temperature radical species
W molecular weight —2  quantities at the upstream ambiance.
X spatial coordinate attached to the flame :
front Superscripts
Y mass fraction. —.+ quantities in the upstream and
downstream of the branching region
Greek symbols n pressure exponent
r parameter defined after equation (A20) ~ dimensionless quantities.

2. FORMULATION

The two-step branching-recombination reaction
mechanism adopted in this study is given by

F+R—-2R
R+R+M-oP+M

m
)

where F. R. P and M respectively denote the rate
controlling reactant (say the fuel). a radical species.
the combustion product. and a third body of collision
needed for recombination. In this mechanism. reac-
tion (1) represents the two-body. high activation
energy. branching reaction that has a small heat of
combustion and produces more radicals than il con-
sumes when reacted with the fuel. Equation (2) is the
three-body. lov. activation energy. highly exothermic.
termination reaction that combines the radicals to

form combustion products and generate heat. For
simplicity we shall therefore assume that the bran-
ching reaction is thermally neutral while the ter-
mination reaction has zero activation energy. If we
further assume that the rates of these two reaction
steps. w,, vary with the first order of each reactant,
then they can be respectively expressed for reactions
(1) and (2) as

Y, ¥, .
w, = B,p"‘wf;ﬁexp(—f,‘k‘T), 3)
”. Yl ’ )'M
W, = B;p '(u_';) _ﬂy (4)

where T is the temperature. ¥, and W, the mass frac-
tion and molecular weight of species i. p the pressure,
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B, and n, the pre-exponential factor and pressure
exponent of reaction j. E the activation encrgy of the
branching reaction.and R the universal gas constant.
The mass fraction of the third body. Y,,. can be con-
‘sidered to be a constant.

The physical problem under study is the steady
propagation of the onc-dimensional premixed flame
in the doubly-infinite domain with an arbitrary tem-
perature-dependent volumetric heat loss function
H(T). The governing equations and boundary con:
ditions are given by

ﬁ,.:f d\( dT) g W —eH(T). (5)
f% - di\(,, ,%’g) - W, (6)
f% ; ( Dy dd) ): Hale,=2w:). (7)

x> —x: T>T_,. Y,=1Y, _,. Yr—=0. (83)
X=X 2—1—.0. %—»O. %_5—'0. (8b)

where x is the spatial coordinate attached to the flame
front. f the mass flux through the flame. p the density.
¢, the specific heat at constant pressure. ¢, the heat of
combustion per unit mass of fuel consumed. . the
thermal! conductivity. and D, the mass diffusion
coefficient of species i. The quantities /. ¢, and pD,
are assumed to be constants. It is appropriate to con-
centrate on only O(¢) heat loss because it represents
the limiting situations of the extinction of weakly-

burning flames. Clearly a flame will extinguish with,

O(1) heat loss if it extinguishes with O(¢) heat loss.

It is worth noting that equation (8b) implies
T—=7T,.}Y,=0.and Yy —0atx— x. forwhich 7,
is the adiabatic flame temperature if the system is
adiabatic and T, = T_, in the presence of heat loss.
Thus both of these conditions are applicable and vield
the same result. Equations (8b) are adopied because
they arc more general. For the case of moderate (i.e.
0O(1)) heat loss in the downstream of the branching
region. equations (8b) are still valid except ¥, # 0 at
X—= 7.

Introducing the nondimensional quantities

foT _ gt
ql')P—; ‘r )I‘—r
. Yo Wy f . x
} = V= .
el e Al S VS
2ER i
@), (4 -(f’:“p‘lb ).F.—1.
Le =25 5=—T‘:d
B,i.p ),_,
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2B.ip":Yy -, Y

()W Wy
where Le, is the Lewis number of species i. Da, the
Damkdéhler number of the jth reaction. f*(Le;) the
flame propagation rate in the adiabatic limit, and
7.a = 1+ T__ the adiabatic flame temperature, the
governing equations are nondimensionalized to

Da: =

df a7 .

& ad —eA(T), 9
a¥. 1 4%,
rx—z:d—\_——l)(h),;},nexp( ET)» (]0)
pdFa 1 Ve
7dt  Leg di°

Da,¥¢Frexp(—E;T)-Da,¥i. (11)
fo—x: ToT_ .. Fiol Pro0. A-o,

(12a)

.. 4T df, d¥a
T EE"O‘ —d—‘-.o i —~0. A-o0.

‘ (12b)

This system will be solved by activation energy asymp-
totics.

Depending on the rate of the recombination reac-
tion relative to that of the branching reaction, three
flame propagation regimes can be identified. In a fast
recombination regime both reaction rates are of the
same order so that the reactions occur in the same
thin reaction region. In an intermediate re-
combination regime the recombination rate is much
slower than the branching rate but is much faster than
the diffusion rate. Consequently the recombination
region is much thicker than the branching region but
much thinner than the preheat region. Finally. in a
slow recombination regime the recombination rate is
either comparable to or slower than the diffusion rate
such that the thickness of the recombination region is
either of the same order of or larger than that of the
preheat region.

In the next two sections. the fast and intermediate
recombination regimes will be analvzed sequentially.
The slow recombination regime will not be analyzed
because it represents very weak chemical systems
which are not likely to be of interest 10 combustion.

3. FAST RECOMBINATION REGIME

In this regime, the rates of the recombination and
branching reactions are of the same order so that both
reactions occur in the same thin reaction region. Thus
the radicals are consumed to produce heat almost
immediately after they are generated. This implies that
the concentration of the radicals is basically inde-
pendent of time and is very small. and hence the steady
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state approximation. d }y dr — 0. is applicable. Figure
1 shows the species and temperature profiles of such
a flame.

With the application of the steady state approxi-
mation. setling equation (11) to zero readily yields

Da, . .
Ve = Da. Peexp(-ET). (13)

The vanishing of the LHS of equation (11) is justified
by the small radical concentration. Substituting Px
into the reaction rate terms of equations (9) and (10),
the problem is then reduced 10 a one-step reaction
with a rate
ﬁ_“: Yiexp(=2ET).

which is second order with respect 1o T.. and has an
effective Damkéhler number Da; Da- and an effective
activation energy 2E. Compared with previous
asymptotic studies (see. for example. refs. {2, 3]) which
adopted a one-step first-order overall reaction. the
difference in the mathematical aspect of the two prob-
lems is only the reaction order. It is therefore of inter-
est 1o study thai. apart from the obvious difference in
the physical interpretation of these two problems.

“in terms of the chain branching and termination

reactions through modifications of the effective
Damkdhler number and activation energy. what
additional effect a simple change in the reaction order
can produce. Due to the similar nature of the asymp-
1otic derivation with previous studies. only the key
steps will be shown below.

In the outer. chemically inen regions. there is no
branching reaction in the upstream region because the
flow temperature is low and the reaction has a high
activation encrgy. In the downstream region branch-
ing is terminated because of complete fuel consump-
tion. The recombination reaction does not exist in the
outer regions due to complete radical consumption.
Thus the outer solutions for T, are

Vi = =(bo+eh,+ - Yexp(Le, f5). (14)
fr =0 (15)

Ote) Branching and
Recombination Region

Of1/c) Burned
Region

O(1} Prenest Region

Fit. 1. Schenwtic of the flame structure for the fast recom-
binution regime. ¥, has been nugmitied for clarity .

while 7 can be expanded as T2 = T3 +c7t 4
This yields

T: =T.. +acexp(J%), (16a)

]Tr—%a —r AT)ds,  (6b)
]%‘1 = ~H(T3). 17

In the above the superscripts — and + respectively
denote quantities in the upstream preheat region and
downstream burned region, while a; and b, the inte-
gration constants to be determined. Note that in the
downstream region, a compressed coordinate n = ex
is used because the temperature decreases gradually
from the flame temperature to the ambient tem-
perature due to the heat loss.

In the inner. chemically reactive region, the co-
ordinate is stretched as ¢ = /¢ while T and 7 are
expanded as

T=7T—c0,—c0,+ . (18)
Pe=ed,+6 @+ a9

Substituting equations (18) and (19) into equations
(9). (10) and (13), and expanding. we obtain the inner

equations
&, . 7Y
d:z --Ad:,cxp[—z(—ﬂ—)ﬂ.]. (20)

d'o, i d:¢|
-7 =0 21
di* Les d&- @n
d2e. 1 d¢, dé, d¢|)
2 S¥r AT Tl (22
47 " Le, ag? ](d: a 22
where
Da} E
=c'Lep o exp( -2 ). 2
A=¢'Le, Da;exP( 27;> (23)

Matching the inner and outer solutions yields the
relations

a, = Tf_i-zv aln=0)= Tn by =1, (24)

and the matching conditions to solve equations (20)
o (22),

0= -x)==-Ti@=0-f(T-T_,)¢. (25)
(= x)=-T7(=0). (25b)

(& 7). - (- )...

0
- J AT;ryde. (26a)

do. . daf; AT
—=(~-'7-)---d—('1-*0)——]—. (26b)

- ui

G i~ —x)= —b,—Le Ji. (27a)
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@ i-=x)=0. (27b)
( ! =0 28
Le, d' O (28a)
d
‘f“"’”’ ) (28b)
A ]

where equations (27a. b) also imply

d¢,

a: Lo —x)= ~Le S (29a)
L

d

d¢.' (Foox)=0. (29b)

Equations (16b) and (17) have been applied in obtain-
ing the second relation of equations (26a. b).

Integrating equations (21) twice and (22) once sub-
ject to the matching conditions 'n equations (25)—(28)
yields

T=1+7_,=T.. (30)
o L
0| -L(JF_EF. (3])

where

L= Z[H(T..,)f?f H(T; )d.\‘-]. (32)

It can be readily demonstrated. by re-defining
£ =% = X[~ (fc)]. that L is independent of .

Equation (30) shows that the leading order flame
temperature is the adiabatic flame temperature. which
is reasonable because the heat loss is assumed to be
QOf(¢). Substituting equation (31) into equation (20)
and integrating the resulting equation once subject to
the boundary conditions in equations (27a.b) and
(29a.b). we obtain an expression which determines
the flame propagation rate.

fFexp (71'—) = I—'&A (33)

In the adiabatic limit. # = 0and / = 1. We then have
(Ley A 2) = 1 for the lamjnar flame propagation rate
/. Equation (33) then becomes

Tiexp (%-)s 1 (34)

The quantities 77 and 4, are not of interest and hence
will not be sohed.

Equation (34). of course. is exactly the same as
that of. say. Joulin and Clavin [2] who cousidered
conductive heat loss and a first-order reaction. Repro-

Intermediate
Recombination

Fic. 2. Normalized flame propagation rate f as a function
of the heat loss parameter L for the fast and intermediate
recombination regimes.

ducing equauon (34) in Fig. 2, it is seen that there
exists a maximum value of L. ... above which no
solution exists. For L < L,,, there are two solutions
for each L. although it is well established that only
the upper branch gives the stable solution. This critical
state is then defined as that of extinction, being charac-
terized by

L.=e¢e"' and f,=e¢'2 35)

4. INTERMEDIATE RECOMBINATION REGIME

In this regime the rate of the recombination reaction
is much slower than that of the branching reaction
but much faster than the diffusive-convective trans-
port rate. Consequently the recombination region is
much thicker than the branching region but much
thinner than the transport region. By defining a
second small parameter J to describe the characteristic
thickness of the recombination region, where & «
d « 1, the flame structure then includes an O(e)
branching region sandwiched by O(5) recombination
regions, which in turn are embedded within an O(})
upstream preheat region and an O(1/e) downstiream
burned region. Since the exothermic recombination
reaction continues subsequent to completion of the
branching reaction. temperature will also con-
tinuously increase until heat loss becomes dominant.
The species and temperature profiles are shown in
Fig. 3.

By separately analyzing the five regions and per-
forming the requisite matching. which is presented in
the Appendix. the flame speed response is now given
by

N "exp(%)= 1. (36)

Comparing equations (36) and (34). we can see that
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Ole) BranchingRegion —= b=—

OL(5) Recombination
Region

©O(1) Preheat Region

O(1/c) Burned
Region

FiG. 3. Schematic of the flame siructure for the intermediate
recombination regime.

their functional expressions are similar although the
branching and recombination reactions occur at
different length scales. Thus the behavior of 7 as a
function of L is qualitatively similar 1o that of the fast
recombination regime. as shown in Fig. 2. The flame
extinction limit is now described by

fo=et Lo=(43)c . (37

It is interesting to note that although the reaction
- kinetics adopted in this regime are different from those
of Section 3. the flame still extinguishes at f=¢"' 7,
albeit at a different L,,. Combining this result with
those obtained from the analysis by adopting a one-
step overall reaction {2} and the numerical studies [4~
8). it may be suggested that extinction is achieved
when the inherent nonadiabaticity of the svstem
reduces the flame propagation rate to about e~ ' or
0.607 of its adiabatic value. The fact that a Jarge heat
loss is needed to extinguish the flame in the inter-
mediate recombination regime as compared to that
in the fast recombination regime is also reasonable
because the overall reaction rate is less temperature
sensitive for the slower recombination rate.

. CONCLUDING REMARKS

In this study. we have analyzed the extinction limit
of the planar premixed flame with O(e) volumetric
heat loss by adopting a two-step. branching and ter-
mination kinetics. Based on the relative rates of these
two reactions. the fast and intermediate combination
situations are studied. The results show that the flame
always extinguishes when the flame propagation rate
is reduced to e~' 7 of its adiabatic value. which is
consistent with previous analytical results with one-
step reaction and numerical results with detailed
chemistry.

The above analysis is based on a general heat loss

function H. Two loss mechanisms that are usually

specified are conduction and radiation. For a linear
heat loss function. H = L(T—T_ ) where L is the
heat loss coefficient. We then have [ = (4;Lc)
(/ ¢.)°. For radiative loss. H = Lp(T*~T*,) and
we have

+‘§7_,+91‘3,+sra,).

Finally. we note that the influence of the reactant
concentration an flame extinction is primarily
through the factor (/) in the definition of A. Thus
as the fuel concentration becomes either jeaner or
richer, the decrease in f° would lead to a cor-
responding increase in A. It is therefore clear that the
present result also predicts the existence of con-
centration limits at the heat loss rate L., beyond
which steady flame propagation is not possible. Such
limits have been identified as the flammability limits
[1.4,5.7. 8]
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APPENDIX: DERIVATION FOR THE
INTERMEDIATE RECOMBINATION REGIME

All the solutions are expanded with respect to the two
small parameters ¢ and §. Thus in the outer. transport regions
away from the recombination region, I'g = 0. while ¥7 is
given by equation (15) and
Fr o= 1=![h,+ 0] +elb, +018)]

+0(¢°) exp(Lep ). (AD)
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The solution of T2 can be obtained by first expanding it in
the form

T: =(T:+6T; + 006} +e[T: +019))~0%). (AY)

which is then substituted into equation (9) to yield equations
(16a). (17). and

T =a,exp(fi). (A3)
71 _‘%l - _J' AT as (Ad)

The compressed coordinate n = X is again used in the
burned region such that all the terms in T~ are functions of .
In the 0(8) recombination region. the coordinate is stret-
ched as | = X &. There is no branching reaction in this region
because of its high activation energy. Thus the outer solution
of T is still applicable. Moreover. only O(d) variations are
possible for 7= and F7 so that their expansions are

7= =7,,-00] -6°0; + 0(6%))

~e]@7 + 605 +0(6°))+ O(e’). (AS)
Ti = [6¥7 +6°¥; +0(6Y)
+E[W: +0W5 +0(8°)]+0("). (A6)

Substituting equations (A5) and (A6} into equations (9; and
(11). but with the branching reaction frozen. and expanding.
we obtain for F;.

RS

—_— Lo YmIA s P= 10

L"R d;: - A.q’l‘y1~ ¢ 1.2, (A7)
1od'Ws: Ld¥:
—_——— e = ALYV
I & @ TV

+=D¥¥1, =12 (A8

where A. = ' Da. is the reduced Damk&hler number for the
termination reaction. The local coupling functions are given

by

& ?) o

d;;(e, - Len, =0, i=12 (;41\9')
d: h A d
—_ E AL U gl T WYy = =12
d::(e,._ Le.) ]d,'(@‘ Y:)=0. i=1.2 (Al0)

The volumetric heat loss is not important in the above equa-
tions because the recombination regions are still very thin.
of O(d). Each of the above equations needs 1o be solved
separately in the upstream and downstream of the branching
region.

Matching the solutions in the recombination region with
the outer diffusive—convective regions yield a, = T~ 7_,.
Top=01 = 7. and the conditions to solve equations
(A7)-(A10). g

Vo= tx)=0 i=1234 (A1)

© (- ==~Tm=0). i=12 (A1)
do; . daT; Ay

PR (.-'7-)=-d—,’('l=0)=—j—‘. (A13)

OiG~—x)= ~a,=-f(T.-T_).. (Al4

O:(>-x)=-T:(i=0). (A15)

40, _ . dF:
(T; ‘-79:)-_, ”(-’7= "&’);.,.‘

(J
- [ ATords. (Al6)

LY

Equations (17) and (A4) have respectively been used in deriv-
ing the second relation of equations (A13) and (A16).

Solving equations (A7) and (A&) subject to the matching
conditions 1n equation (Al]). we obtain
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Y =4 (I{+c) (A7)
Wi =Tcs Ty + i) (A18)
.1 i 4Lexf

¥i =i [(r;+c,=)=+5 T ] (A19)

da¥; r- 3 3 cieiT |
dy ’(r;+c,=)’[r;+c.= 2@ +ei) 5‘5"“]]‘
(A20)

where ¢ are the integration constants to be determined and
T = (QLegA23)' .

Applying equations (A17)-(A20) to equations (A9) and
(A10), then solving the resulting equations subject to the
matching conditions (A12)-(A16). we obtain

L .
T Lex (Ti+c7 )’
—7(To-T )X ~a)H(=)-Ti n = OH.Q). (A2D)
o Tei
O = L rc )
~T: (@ =0H(-~T1 (= 0H.(). (A22)
d4°e; 8 ciA; 6 1
dr®  (To+ci) [(THC.‘)’ +l‘]’(5 - Un)]
(T -T_OH. (=)
d0; I ' o * 9 - L
oy T (r;+c.=>’[iei I{+cf ~ e (5 Len)
ciciA, AT, ..
- (1‘:+c.=)-‘]+ 7 e

o
—[ﬁ‘; (= 0)+I AT )d‘\’]H\(-;). (A24)

h

(A23)

where H, is the Heaviside function with H.() = 1 for { >0
and 0 for ; < 0. In the above only the solutions required for
matching with those in the branching region are presented.
Because (d¥7 idy)q 2 0 and (d¥7 /ds)o < 0. we must have
¢; <0andcy > 0.

In the thin branching region. the coordinate is stretched
as & = /¢ while T and Ty are expanded as

Pe=c(@,+ )+ (@4 )+ 0(Y). (A25)
Fa = (00, +8°Y3+ ) +eW.+- )+ W+ )+ 0.
(A26)

Because the activation energy for the branching reaction is
high. variation of temperaiure can only be O(e). Thus T is
expanded as

£

T= (TI’.O_&TLI+"')-5(0| + 3

o:+.u)_£?(g’+...)+....

(A27)

Although the activation energy is large. it is not extremely
high such that the branching reaction can occur in a tem-
perature range smaller than its maximum value by an O(9)
amount. Substituting equations (A25)~(A27) to equations
(9)-(11) and expanding. we obtain the following equations
that describe the branching region.

9¥ 0. i=1.3. (A28)
d:-
dae,
! = A29
a0 (A29)
4 A (A30)

4
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do. Ldu,
—d‘Tf -—7'-d—;- =2A0 Y. (A3l
d [ v:)_ >
d_,’_:(Lc, * Lck)_ 0. (A32)
1 &'¢. ,do, 1 d'y, dy.
F di° 4 3 T Ies 08 -7 T (A3
1 de, , 7.}
L - 3
T a As‘i’ﬂdlexp[ (ﬁ 6,1 (A3
where
A =6 £ A3
v = &°0Da, exp —m—‘:—- (A35)

is the reduced Damkéhler number for the branching reac-
tion.

Matching is performed first by expressing the outer solu-
tionsof I'f intermsof ; = ¥ c. expanding. and then equating
the resulting expression with the solution in the branching
region. This gives b, = | and equations (27)-(29). Next. the
solutions of T= and ' in the recombination region are
expressed in terms of = (¢ 4), and expanded to vield

4
= — =77 = 0). 3
T. yPRPIE Tin=0 (A36)
and the matching conditions
ViE= ) =4 (7). (A37)
Yol = +7) = F(c: =83 (¢5). (A38)
1 ci 4 Leg
- gx)=— | D+ . 3
Vi~ x2) e [\<f)-+5 I]] (A39)
dv, . r {
ST li—~zx)= ol Rty
d: (i) el
Yeill 1} . s
_[5 ithe chJ](r; —8,»}. (A40)
9.(5*+1)=——£——,((‘2 -8-T:3=0y
- Leg(e) -
(T =T NHA~OH=~T: 0= OH (3). (A4])
0.5 = =7 = 2047 =5 )5 (e (A42)

9 e {csr ciA;
a2 T e eflen U
6 1 . _g= Ad
+F7(3 - E:)]Nf -8,\}+ '~—r—— HA)
-[ Fde=T 3+ 8= 0)+J AT )di']H‘(—:).

(A43)

In analyzing the branching region. first equations (A28)

for ¥, and (A32) are soled subject to equations (27). (A37)
and (A38) to vield

8A. Y'*
(i =~ = 2(5—1‘(: '73) . (Ad4)
R
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v, = (3""‘725 ". (A45)

8A

Substituting equations (A44) into equation (A36), T, can
be determinedif- 77 (7 = 0) is known. Because T, , represents
the temperature at which branching reaction occurs, it is
only a function of activation energy and chemical reactivity
but does not depend on the heat loss. Thus by knowing that
77 (n = 0) = 0 and = 1 in the adiabatic limit, we obtain

3 13
Tf.l = (m) .

andhence T1(n=0)= T, ,(J'-1).

Next. by sequentially integrating equations (A28) and
(A29) twice. and equations (A30). (A3]1) and (A33) once,
subject to equation (A44) and the proper boundary con-
ditions of (A39)~(A43). we obtain To=1+T_, = T
3 =¢3,¢5 =¢}, by, = —Lep Jei /8. aswell as

f c3 L
B W 4

where L is defined in equation (32).

Finally, substituting equations (A45) and (A47) into equa-
tion (A34), and defining the new variables
LI

QLe,”

i [:(um\n‘ ’(3,1\':')' 6][]: exp (4_5_)]‘
xexp[{; (5_ )] (Ad8)

the structure equation is obtained,

£0'9 46 .-
S — ——¢=0.
P -E

3
=0 =0 {[2 um(%’?) ]

. []“ exp (5_)] }— 2In(§12). (AS0)

HE~x) =0 (AS1)

This is a modified Bessel function of order zero whose
solution is ¢ = cKy({). where ¢ is the integration constant,
after equation (ASl) is applied. Because Ko({ =0) =
—In( 2)—y. where 3 = 0.5772 is the Euler’s constant, upon
applying equation (AS50) we obtain

o (2] Tl ] o

In the adiabatic limit. £ = 0 and 7= 1. we have

U]
-

Substituting equation (AS3) in equation (A52). we obtain
the flame response given by equation (36).

(A46)

(A47)

oo] g’:’b

(A49)

(AS2)

(AS53)




Appendix B

COMBUSTION AND FLAME 97: 317-338 (1994)

The Structure of Premixed Methane-Air
Flames with Large Activation Energy

J. K. BECHTOLD*®* and C. K. LAW
Depanment of Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08544

We examine the structure of both lean and stoichiometric premixed methane~air flames with a reduced
reaction mechanism. Our starting point is a four-step, C,-chain mechanism that has been derived previously
using a series of steady-state and partial equilibrium assumptions. This same mechanism has been adopted in
several recent asymptotic studies that have used the ratio of the branching to propagating reactions as the
perturbation parameter to analvze the fuel consumption zone within the flame structure. In the present
study. we assume that the activation energy of the intermediate reactions in the fuel consumption zone are
sufficiently large to employ the method of large activation energy asymptotics. We obtain temperature and
species profiles. as well as a structure problem whose solution determines the buming rate eigenvalue in
terms of a parameter that represents the ratio of branching to terminating reactions. When this parameter is
set 10 zero, the results of previous rate-ratio analyses are recovered. In the opposite limit that this parameter
becomes large. the structure reduces to that of Lifidn’s premixed burning regime. In both limiting cases, we
determine the parametric dependence of the burning rate on equivalence ratio, pressure, and the ratio of
competing rates of branching and termination reactions. The trends are found to be largely in agreement
with experimental observations. One advantage of the present approach is that the exponentially nonlinear
reaction rate terms are retained. thus permitting the study of the response of methane-air flames 1o small
perturbations.

317

IpExT

NOMENCLATURE p pressure
Q. non-dimensional heat re-
A parameter defined in Eq. 4.9 lease of global reaction k,
Ay Ay scaled preexponential fac- defined in Eq. 2.4
. tors defined after Eq. 4.5 . q parameter defined in Eq. 5.5
A, A, preexponential factors in re- G heat release per mole of fuel
action 1, 11 consumed
a, integra.ion constants 9f-9u-9n,9co Parameters defined after Eq.
b, integration constants 4.10
, specific heat lfo universal gas constant
D Damkéhler number defined 7T temperature
in Eq. 4.10 t temperature perturbation in
D scaled Damkdhler number oxidation layer defined in
defined in Eq. 6.21 Eq.5.2
D, mass diffusivity of species i ¢ velocity )
E,.E, activation energy of reac- W variable defined in Eq. 4.18
tions 1, 11 W, molecular weight of species
fuel i .
equilibrium constants w, overall reactions defined in
elementary rate constants Eq. 2.1
: Lewis number of species i X, spccies variable related to
parameter defined in Eq. mole fraction normalized by
6.21) mole fraction of fuel
x spatial variable
Y scaled variable defined in Eq.

* Corresponding author.
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Y, mass fraction of species i

yi mole fraction in fuel con-
sumption layer, defined in
Eq. 44

Z, mole fraction in oxidation

layer, defined in Eqgs. 5.2,5.3

Greek Symbols

a parameter defined in Eq. 2.3

Y parameter defined in Eq. 6.2

6 thickness of fuel consump-
tion layer, defined in Eq. 4.3

€ thickness of oxidation layer,
defined in Eqs. 5.10, 5.21

{ stretched spatial coordinate
in fuel consumption layer

n stretched spatial coordinate
in oxidation layer

7 Chaperon efficiency of
species i

8 temperature perturbation in
fuel consumption layer

A thermal conductivity

m thickness of radical con-
sumption layer, defined in
Eg. 4.21

£ scaled spatial coordinate de-
fined in Eq. 6.14

P density

o stretched spatial coordinate
in radical consumption layer

T nondimensional tempera-
ture

¢ equivalence ratio

w, nondimensional overall re-

action rates

Subscripts and Superscripts

b burned value

i species, [ =
F,CO,CO,,H,H,,H,0,0,

k global reaction step

0 value at radical consumption
zone

u unburned value

1. INTRODUCTION

The theory of flame propagation has been
greatly advanced during the past 20 years
through the use of large activation energy

J. K. BECHTOLD AND C. K. LAW

asymptotics to simplify the nonlinear reaction
rate terms in chemically reacting flows. By
modeling the complex chemical kinetics to
consist of a single overall reaction with large
activation energy confined to a narrow region
in the flow field, a mathematical treatment of
the governing equations is often possible.

While the one-step chemistry model facili-
tates mathematical analysis, it is recognized
that this simplification is incapable of provid-
ing a satisfactory explanation for phenomena
that depend largely on reaction intermediaries
and thus an accurate description requires a
more detailed chemical kinetic scheme. Since
full kinetic mechanisms are frequently too large
to permit either mathematical or numerical
analysis, there has been a great deal of recent
work devoted to identifying the most important
reactions for various fuel-air mixtures in order
to reduce the number of steps to a point where
the governing equations become amenable to
analysis. For example, Miller, et al. [1] have
derived a “short” mechanism for methane-air
flames consisting of about 40 steps using only
C,-hydrocarbon species. The resulting system
of equations has been solved numerically to
compute burning velocities for lean and stoi-
chiometric mixtures over a wide range of con-
ditions [2].

Although these “short” mechanisms repre-
sent a significant simplification over the origi-
nal full system, the number of equations is still
much too large for a mathematical treatment.
Furthermore, in analyses based solely on nu-
merics, it is frequently difficult to identify the
most important parameters that mostly influ-
ence the global properties. Thus, in order to
bridge the gap between the one-step kinetics
and the large multistep schemes, Peters [3] has
systematically reduced the existing “short”
mechanism down to a mechanism consisting of
four overall reactions using a series of steady-
state and partial equilibrium assumptions. The
resulting four-step model involves just seven of
the original species and includes kinetic data
from only five elementary reactions. On the
basis of this reduced mechanism the basic
structure of methane—air flames has been stud-
ied asymptotically (4-7).

In many of these studies, the activation en-
ergies of the individual elementary reactions
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are not considered to be large enough to em-
ploy large activation energy asymptotics. The
reaction rates are assumed to have a power law
dependence on temperature, rather than the
conventional Arrhenius form, and the ratios of
the individual reaction rates are used as small
parameters in the asymptotic analysis. This type
of approach has been used in two-, three-, and
four-step models to calculate burning velocities
over a wide range of equivalence ratio, pres-
sure, and temperature. However, the power-law
dependence on temperature does not exhibit
the same kind of sensitivity to temperature
variations as the Arrhenius approximation.
Consequently, the response of the flame to
various external perturbations is not very sig-
nificant.

In contrast to previous works, the key termi-
nation reaction in these studies was found to
be the propagating step, rather than the
three-body recombination reaction. Further-
more, the leading order flame structure analy-
sis yielded a value for the “Damkéhler num-
ber”, which was independent of the burning
rate. The resulting expression was therefore
used to calculate the temperature 7° at the
leadmg edge of the flame zone. A solution for
T was previously sought of the form 70~ 1,
+ O(e), where T, is the known flame temper-
ature and e (assumed small) is a measure of
the flame width, which in turn is proportional
to the burning rate. Thus an expression for the
burning rate was obtained by equating the first
two terms in this asymptotic expansion and
solving for e.

In the present study, we adopt the four-step
mechanism as a starting point to analyze the
structure of premixed methane-air flames in
the same manner as Peters and Williams [4].

Fue!l
Consumplion

jo— & —f

Preheat
Zone
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That is, we assume that the H radical is in
steady state -and that, to first approximation,
the water—gas shift is in partial equilibrium,
effectively reducing the four-step mechanism
to a two-step mechanism. However, as in {4],
we shall incorporate nonequilibrium effects as
a perturbation from the leading order partial
equilibrium state. Qur analysis differs from
theirs in that we retain the Arrhenius form for
the individual reactions and, except for the
three-body recombination reaction with zero
activation energy, we consider the effective
activation temperatures to be sufficiently large
such that activation energy asymptotics can
provide reasonable and useful results. We re-
mark that although activation temperatures
have been estimated to be on the order of 7000
K, it is known that even modest values are
sufficient to confine the reaction to narrow
regions, thereby enabling the use of activation
energy asymptotics to obtain remarkably accu-
rate results {8].

In our study the flame structure remains
identical to that analyzed by Peters and
Williams [4] (Fig. 1). It consists of a chemically
inert preheat zone where the temperature in-
creases from its unburned value to a character-
istic temperature at which reaction can take
place. There is a very thin fuel consumption
zone where the hydrogen reaction occurs, and
the H radical is entirely consumed by the fuel
in a yet thinner zone that defines the leading
edge of the flame structure. Immediately
downstream of the fuel consumption layer lies
a relatively broad, but stil! asymptotically small,
oxidation layer where H, and CO oxidize to
form H,0 and CO,. This entire structure is
embedded in a flow field which is chemically
inert due to the absence of radicals.

Combustion
Products

Radical ~=| j= M
Consumption

1 ]
| € ]
Onidation Layer °

Fig. 1. Schematic of the flame structure, iliustrat-
ing several species profiles and the temperature
distribution.
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The present analysis provides a complete
description of the above flame structure, and
the role of each of the overall reaction steps is
determined. Our results include the evaluation
of the burning rate in terms of pressure, equiv-
alence ratio, and a parameter that represents
the ratio of the competing rates of the branch-
ing and termination reactions. In particular, we
find that when this rate-ratio is reduced, the
burning rate eventually decreases to zero. For
the opposite limit that the rate-ratio is large,
we find that the burning rate asymptotes to a
constant value. In this limit, the radical con-
sumption zone retreats far upstream into the
inert so that the fuel consumption region is
governed solely by the concentration of the
fuel. As a result, a coordinate transformation
can be made which expresses the structure
problem in a form identical to that found by
Lindn (9] in the premixed burning regime of
his diffusion flame analysis. Thus we are able
to adopt his correlation curve as an approxi-
mate expression for the burning rate in this
limit. We find that the role of the propagation
step changes from retarding to enhancing reac-
tion as this limit is approached.

In what follows, we present the analysis of
the above structure to determine the charac-
teristics of premixed methane-air flames. In
the next section the mathematical formulation
of the model problem will be discussed. The
asymptotic analyses of all the sublayers in the
flame structure are then performed in Sections
3-5. In Section 6 we analyze the resulting
structure equation and in Section 7 we evalu-
ate the burning rate over a range of parameter
values. Finally, in Section 8 we summarize our
results and add further discussion.

2. THE MATHEMATICAL MODEL

The reduced four-step mechanism derived in
Ref. 3 consists of the following overall reaction
steps:

CH, + 2H + H,O0 - CO + 4H., 4}
CO + H,0 = CO, + H,, 41))
2ZH+M > H.+ M, (11
O, + 3H. = 2H.O + 2H. (1v)
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which represent, respectively, fuel consump-
tion, the water—gas shift, radical recombina-
tion, and a branching reaction. We employ the
notation of Peters and Williams [4] to express
the rates of these four steps as

w, = k;,[CH,][H], (2.1a)

k,[H]
wy, = km ([COJ}[H,0]

- [COz][Hzl/K”), (21b)
Yin= k5[02][H][M] = kmpIOz][H], (21C)

[HY’{H,0F
= k,[H]|[0,] - ———], (2.1d)

W)y 1 ( 2 [H2]3K,y )

where p is the pressure, K, are the equilib-
rium constants, and k; are the elementary rate
constants, which are given explicitly in Ref. 3.
The concentration of the third body M in
reaction III has been written in terms of the
Chaperon efficiency 5, of species / in order to
convert the three-body rate constant into a
two-body form. In this model, reactions 1, II,
and IV have large activation energies while
reaction III has zero activation energy [3). This
implies that the three-body radical recombina-
tion reaction is least sensitive to temperature
variations and therefore takes place over a
broader, but still asymptotically thin, region.
We start out by first assuming that the wa-
ter—gas shift (reaction II) is in partial equilib-
rium, thereby reducing the four-step to a
three-step mechanism. This assumption can be
justified when the corresponding Damkohler
number of reaction Il is sufficiently large, a
situation that can be achieved at sufficiently
high pressure. We consider nonequilibrium
effects as a perturbation, as was done in the
studies of Peters and Williams [4] and Seshadri
and Peters [S). That is, we will account for the
existence of a narrow zone immediately down-
stream of the fuel consumption layer, where
the water—gas shift is not in equilibrium, fol-
lowed by a layer where reaction II reaches

_equilibrium. In the first approximation, we set

Eq. 2.1b to zero to obtain an expression for the
concentration of CO.

The rate constants in the three remaining
global reactions govern the intermediate reac-
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tions
kll
CH,+H->CH, + H,,
k,
H+0,—-0H + 0,

ks
H+ O, +M-HO,+ M,

which represent chain-propagating, chain-
branching and chain-terminating steps respec-
tively. Many previous studies have used the
rate-ratio k,/k,,, which describes the competi-
tion of oxygen and fuel for the H radical, as
the small perturbation parameter to describe
the fuel consumption zone thickness. Those
studies have found that k,, ultimately has a
chain-breaking effect. producing the more sta-
ble methyl radical, CH,, at the expense of the
very active H radical. In the present study, we
demonstrate that k,, can play an intermediate
role to that of the chain-branching and chain-
breaking reactions k, and k,,, respectively.
Specifically, we find that when a particular
lumped parameter containing these rates is
large, the chain-propagat 'g reaction further
enhances burning. On the other hand, when
this lumped parameter is small, the flame burns

weaker and reaction k,, is found to inhibit

propagation.

We consider steady, planar deflagrations with
constant burning rate pu such that the nondi-
mensional conservation equations for the re-
maining six species, as well as the temperature
equation, can be written in the form

LX) = —w, (2.22)
Ly(Xy) = 2w, = 2wy, + 2wy, (2.2b)
Ly (Xy,) + alco(Xy,)

= Sw, + w;; — 3wy, (2.2¢)
Lo(Xo) = —ay, (2.2d)
Ly.o(Xy,0) - a_Lco(XH_,)

= —2w + 2w, (2.2¢)
LeofXco,) + alco(Xy,) = vy, (2.2)

L(T) + Q”aLco(XH:)

=(Q,+ Q))w, + Qi + Qwpy.
. (2.2g)

o PR e L Ll RN > S e e
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In addition, the partial equilibrium assumption
for reaction II yields the relation
XCO = aX H,
where

I-‘H,LCCO;XCO;

= . 23
Ley,0lecoXn,0Kn

a

Peters and Williams [4]) argue that the ratio
Xco,/Xn,0 varies very little throughout the
flame structure. Consistent with their study, we
treat a as a constant in order to facilitate our
analysis. Here the differential operators are
defined as

L(-) a dz)()

L Le a il (
,‘(')2( ,'d_x' - F) ))

where the Lewis number of each species Le; =
A/pDc, has been assumed constant.

The nondimensional quantities in our sys-
tem are given in terms of dimensional vari-
ables (with hats) by

ipLe, T-- Au
X 0 de’ T 7o~ “u ’
YW,
X = Sl —
Leiyf,an,i

and the reaction terms now have the form

il k=1I,.. IV
W, pzvchyr.uwk, grory .
In the above equations A is the thermal con-
ductivity, ¢, the specific heat, and pD, the
density-weighted mass diffusivities. The quanti-
ties Y, and W, are, respectively, the mass frac-
tion and the molecular weight of species i so
that each X, is related to the mole fraction
normalized with respect to the mole fraction of
fuel in the fresh mixture. The subscript u de-
notes_values in the fresh unburmed mixture
and T? is the temperature of the leading edge




322

of the flame zone where fuel reacts with the H
radical. The parameter Q, appearing in the
energy equation (2.2g) is given by

YF.uqk

e e T A 2
Wi (T -T,) 24

O =

where g, is the heat release per mole of fuel
consumed.

The above equations are to be solved subject
to the boundary conditions

Xp = Le;!, on = 2Le(',:d>", 7=,
Xy "'Xco2 ==XH;o =XH: =Xco =0,

x—= -, (2.5)
XH,o = XH:O.b’ Xco: = XCOz.b'
XO: = Zlae(-):((b_l - 1), T= Tb,
Xu=Xp =Xy, =Xco0=0,
x=x  (2.6)

where ¢ = 2Y, W, /(Y,. W;) is the equiva-
lence ratio, such that ¢ = 1 for stoichiometric
mixtures. Our analysis can only be considered
valid for ¢ < 1 since the reduced mechanism
and the corresponding flame structure are only
appropriate for stoichiometric and fuel-lean
mixtures. An analysis of fuel-rich mixtures will
require the use of a different reaction mecha-
nism and flame structure.

It is convenient to work with the reaction-
free coupling functions

L(7) + (0, + Q + @y + 20, L (X))
+ (30, + Q1)

y L,(X,)
Qu + )
+ ————Q’” 3 Q'V LH:(XHZ)
Q1 + Q)
+{ou+ 238 o ox) =
Q2.7
Le(Xp) + 5L, (X)) + §Ly (X))
+3Ly,0(Xy,0) = 0, (2.8)

Le(Xp) + 3La(Xy) + 3Ly (X))
-.%LO;(XO; - %LCO;(XCO3) - 0, (29)
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which replace Eqs. (2.2¢,1, g). These equations
can be integrated across the entire flow field to
yield the following leading order expressions
for the burned temperature 7, and the down-
stream product concentrations Xy, and

Xco,.b :

=0, +Quy+Qu + 20,
Xu,0.5 = 2Leglo,

(2.10)
Xco,.» = Leco,-
(2.11)

Before analyzing the system 2.2, we first
invoke an additional assumption in order to
simplify matters. As discussed in Ref. 4, when
the H radical is consumed much more rapidly
than it is produced, its concentration remains
very small and it is said to be in steady state.
Under these conditions, the above system of
equations is simplified and the three-step
mechanism is further reduced to a two-step
mechanism. By making this assumption we can
set the right-hand side of Eq. 2.2b to zero to
obtain

2.12)

from which the radical concentration is found
to be

@y = w; t+ oy,

(Ley, Xy )"?

XH == "Kleozuoz unuﬂzoxﬂzo

172
_ kuleXy mp}
kLeo Xo, &,

(2.13)

In Section 4 we will see that this steady state
approximation for the H radical holds through-
out the entire flame structure with the excep-
tion of a very narrow region at the leading
edge where the fuel attacks the radical and
totally depletes the concentration of H.

Equation 2.12 is used to eliminate w,, so
that our system now can be written

(LH1 + aLco)(an) - 2((0, - '.lll)'
(2.14b)
LO;(XO;) = -w T Wy, (2.146)

LH;D(XH;O) - aLco(Xﬂz) - 2(0",. (2.1“)
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"Leo(Xco,) + alco(Xy,) = v, (2.14e)
L(T) - QIILH:(A'H:)
=(Q, -0, +0))e
+(2Q" + Ql” + le)wlu- (2.l4f)

The remainder of this study is concerned with
obtaining solutions to Egs. 2.14 in order to
gain a description of the methane-air flame
structure sketched in Fig. 1; we begin with an
analysis of the chemically inert outer regions.

3. THE CHEMICALLY INERT REGIONS

All of the chemistry is confined to a very
narrow region located near x = 0, on either
side of which the flow field is chemically inert.
The H radicals are entirely produced and con-
sumed within the flame so that the H-atom
concentration is zero on either side of the
flame zone. For the remaining species a bal-
ance is maintained between convection and
diffusion. Solutions are readily found to be

-1 -
X, = {Le, [1 - expllerx)] x<0, (5,
0 x>0,
2Leglo' - by exp(leg.x) x <0,
% |2legi(e - 1) x>0,
Xy, = {bz explley.x) x <0, 3.2)
- 0 x>0,
byexp(Ley ox) x <0,
H:0 Xu.0.4 x>0,
byexp(lecg.x) x<0,
XCO: = {Xco:'b X > 0, (3.3)
a,e* + dae* + -, x<0,
= {7b+6a2+---, x>0, G4

where the unknown constants a,, b, will be
determined by matching to solutions in the
inner flame region. In general, all constants
are to be expanded in terms of the two param-
eters, & and ¢, which are assumed small rela-
tive to the thermal thickness of the flame.
These parameters represent the thickness of
the fuel consumption zone and the oxidation
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layer, respectively, and they will be defined in
the next two sections.

We note that the fuel is entirely consumed
by the flame so that no leakage to the down-
stream vegion occurs. Furthermore, we will
impose continuity of X across the fuel con-
sumption zone up to O(5), which is the needed
order of accuracy for the present problem.
When continuity is applied, the concentration
of fuel outside the flame structure is given
entirely by Eq. 3.1 to all orders in € and .

4. THE FUEL AND RADICAL
CONSUMPTION LAYERS

In seeking solutions to the system 2.14 we
assume that the nonzero activation energies
are sufficiently large so as to confine reaction
of fuel to a narrow region in the flow field,
thus permitting the use of activation energy
asymptotics. Of the reaction rates remaining in
our system, k,, has zero activation energy
while k,, and k, have the form

ky = A-n.m exp( ‘En/Rof)’
k, = A, exp (-E,/R°T), “4.1)

where the Es are the activation energies and
R is the gas constant. The preexponentials A;
are generally quite large and so it is appropri-
ate to rescale them as

4.2)

where 70 was defined earlier as the character-
istic temperature at which fuel reacts with the
radical. It follows from Eq. 2.14a that fuel is
consumed by the reaction with the rate k,,
which suggests that an appropriate small pa-
rameter to define the thickness of the fuel
consumption layer is given by

RO(F?Y’
6 - Ay
E(T°-T,)

A, = A, exp(E,/R°T?),

4.3)

Thus, fuel consumption will be restricted to a
narrow region of width O(8) where the tem-
perature is close to 79, that is, where 7= 1 =
0O(8). We note that, although the temperature
will continue to increase downstream of this
layer, reaction is terminated by the depletion
of fuel.
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4.1. The Fuel Consumption Layer

In terms of the outer variable, the flame re-
sides at the location x = 0. To investigate the
fuel consumption region we introduce the
stretched coordinate x = 8/ and seek solu-
tions of the form

T=1+80+--, Xp=28y+",

X;=X2+ 8y, +-, (i#F). 4.9)
The H-radical concentration is readily deter-

mined from Eq. 2.13 as

(LeH x5 )3/2

u= VKX oo, 1o e X0

172
p} . (4.9)

Gradients are large in this region so that dif-
fusion dominates over convection and thus we
expect the diffusion and reaction terms to bal-
ance in our equations. In order that such a
balance is maintained in the equation for the
temperature perturbation, we require that &,
= O(572) so that A,, = 5 24,,. We also want
to retain the variation of H radical with fuel
concentration and by balancing the first two
terms on the right-hand side of Eq. 4.5 it is
necessary to introduce the additional scaling
A, = 67'A,. Furthermore, the ratio k, /k,, has
a weak temperature dependence [4). Thus we
simplify matters by assuming the activation
energies of these two rates are equal, that is,
E, = E, = E. The above scalings imply that
the last term in Eq. 4.5 is smaller in magnitude
than the remaining terms throughout this re-
gion (i.e., k,,;/k, « 1), and that the ratio
ki,/k,, = 6A4,/A,, is a small parameter. In-
deed, as discussed earlier, many previous stud-
ies have used the rate-ratio k,/k,;, which de-
scribes the competition of oxygen and fuel for
the H radical, as the small perturbation param-
eter to describe the fuel consumption zone
thickness.

To leading order in 8, reaction w,,, is negli-
gible and the relevant equations governing the

8k, Le k
xl1 - 1 r);r 4 S
kiLeo. Xo, K
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fuel consumption zone (2.14a,b) and (2.7) can
be expressed as

d 2)’r

T = Dy/1 — Ay, exp(9), (4.6)
) .
225[0 +49rYr t qulu
+(gy, + @4colyn,] =0, @.n
d*(1 + a)yy, d’y,
3 =-2 , (4.8)
d? d¢?
where we have defined the parameters
A=A, Les/(ALeg, X3,), (4.9
Le, AY: , 0§
D= pzvchW, VKIVXS,LCO,
32
Ley X3
(Len X5) (4.10)

8 Ley,0X1.0 ik
qGr=Q; +Qy+ Qi+ 2Q),
n =30y + 0n)/4,
qu, = (Qu + Q1)/2,
0o =0u+(Qu+0n)/2

These equations are to be solved subject to
appropriate boundary conditions which are ob-
tained through matching with the upstream
inert region and the downstream oxidation
layer. We have avoided writing equations for
the O,, H,0, and CO, perturbations since the
system 4.6-4.8 is independent of these quanti-
ties.

As we mentioned earlier, the steady-state
approximation implies that the H-radical con-
centration is small so that y,, can be neglected
in Eq. 4.7. However, it is easily seen that Eq.
4.6 breaks down as yr — 1/A, suggesting that
our steady-state assumption for H becomes
invalid. Thus we expect a boundary layer to
develop near y; = 1/A, where the fuel de-
pletes the radical concentration. Peters and
Williams [4] have analyzed this boundary layer
and have demonstrated the smooth transition
to a zero H-atom concentration. For complete-
ness, we briefly summarize that analysis.
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4.2. The Radical Consumption Layer

We first need to determine the local behavior
of X;. Since the region preceding the radical
consumption layer is chemically inert (due to
the absence of the H-radical), the solution 3.1
for X, is valid everywhere upstream of the
boundary layer at { = —1/A. Thus by expand-
ing Eq. 3.1 in terms of the inner variable
x = 8 we find

Xp~ -8+, (4.11)
from which it follows
yeE —-{ for{< -1/A. (4.12)

In the remainder of the structure, ie.. {>
—1/A, yp is determined by solving Eq. 4.6,
and continuity of y, and dy,/di at { = —1/4
provides the boundary conditions

yr=—{ at{=-1/A. (4.13)
The equation governing the radical concen-

tration in the flame structure (where o, is

negligible) (Eq. 2.2b) can be written as

Xy
d{: =28'(w,—0)”')
2Llegy Ley AY; uPl:n
= 62 S : 0 0
p.l.-cpurr leO:XH
ki Le X
x|-1+ L

(LeyLey.oXh.0X5)’
(Lew.X3.) Leo X3 K,y
(4.14)

T+

In the much thinner radical consumption layer
temperature variations are negligible, so that
@ = 0, and we introduce the stretched variable
o as

{=—-1/A+ po/A, (4.15)
where the small parameter u will be appropri-
ately chosen shortly. It follows from Eq. 4.13
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that the fuel concentration in this layer has the
form y,~ 1/4 — po/A. We insert this into
the steady-state expression for X, (4.5) to
ot:)tain the following matching condition for
Xy

3z2
o VK Leo X3 (Lew, X3,

X
" LeyLey,0Xi,0

Vo,

(4.16)

At the opposite end of this region the radical is
attacked and consumed by the fuel, yielding
the additional boundary condition

X3 ~0, 4.17)

The matching condition (4.16) suggests the
magnitude of X3 to be O(y/u) in this region
and it is convenient to introduce the new vari-

o X,

o -,

able W as
0 0 \¥/2
X0 ‘/—WVK"’RO:XO:(]"C"':XH:)
= n R
" LCHI‘H:ng,o
(4.18)

so that our system governing the radical con-
sumption layer takes the simple form

W .
-7 = wWiw? - o], . (4.19)
W=0 aso—- -x, W=Voaso-c,
(4.20)
Here u is chosen as
1/3

®=1\2sD

3/2
Ky Lleo, X3, (Len, X4, )
LcheH,OXl?I,O

«1, (4.21)

where we have made use of definition 4.10.
The system 4.19-4.20 can be solved numeri-
cally (4] and the resulting profiles for W illus-
trate the smooth transition to zero of the H-
atom concentration in the radical consumption
zone. .

We remark that the analysis of this region is
based on the assumption that u is a small
parameter and it follows from Eq. 4.21 that

VK Leo XS, (Lew.X5,)"

LeyLey 0 X0

«§. (422
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By comparing this expression to Eq. 4.5 we
conclude that the radical concentration must
be smaller in magnitude than the width of the
fuel consumption zone, which is in agreement
with our earlier comments regarding the valid-
ity of the steady-state approximation.

As discussed in Ref. 4, the existence of this
radical consumption layer indicates that it is
the consumption of H atoms by the fuel that
terminates the reaction in the upstream pre-
heat zone. This differs from standard analyses
with one-step kinetics where reaction is frozen
in the preheat zone by a drop in temperature.

Based on the above boundary layer analysis
we can neglect the perturbation y, in Eq. 4.7.
Furthermore, we can use Eq. 4.8 to replace
Yu, and thus reduce the structure of the fuel
consumption layer to the two equations

dz

T{y—: = Dy;y/1 — Ay exp(6), (4.23)

d’ (gy, + aqco)

agz |0 iy | =o
(4.24)

Upstream boundary conditions for this system
are obtained by matching to the solutions in
the preheat zone, where in particular we have
obtained Eq. 4.13 for y,, and the expansion of
the outer solution 3.4 in terms of x = 8¢ pro-
vides the necessary conditions for 6. The fuel
is entirely consumed downstream, which im-
plies that
yr=0as { — =, (4.25)
and bcundary conditions for 6 are obtained by
matching to the solution in the oxidation layer
immediately adjacent to the fuel consumption
zone. An analysis of this oxidation layer, which
we now present, also provides us with the
needed expression for X} , 8ppearing in D, as
shown in Eq. 4.10.

S. THE H, AND CO OXIDATION LAYER

Immediately downstream of the fuel consump-
tion region lies a somewhat broader layer where
H, and CO oxidize to form H,0 and CO,.
The width of this Jayer is characterized by e
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which will be chosen shortly such that § « ¢
<« 1. For this reason the present flame struc-
ture resembles that of the Zel'dovich-Lifidn
mechanism [10, 11], which consists of a very

" thin branching reaction zone, characterized by

a large activation energy, embedded within a
somewhat broader recombination zone with
zero activation energy.

Our governing equations simplify in this re-
gion since X = 0 and w; = 0. The molar con-
centrations for H and CO are obtained directly
from Eqgs. 2.13 and 2.3. In order to determine
the remaining species concentrations we intro-
duce the stretched coordinate, 7, as

x=¢€n/2q, (5.1)
and seek solutions of the form

T=1,— €1+ -,

91 + a) Xy, =€Z + -,

Xo, =Xo,» + €25, + -, (5.2)
Xu,0=Xn,00— €Zy,0 +

Xco, = Xco, » ~ €Zco, + . (5.3)

At leading order, the equations governing this
region can now be written in the form

4’z e d?
A

2

Ed#z‘[z - q(l + a)ZH;O] = 0;

d? (1+a)

vl Lol =0, 5.4
dn’ 1~ Zco, (5.4)
where we have .employcd the notation
q9=4qu,=4qco = (Qy, + Qv)/2. (5.5)

Peters and Williams [4] have computed the
values of Q, and found that Q,, is sufficiently
small, thus enabling us to write the second
equality in Eq. 5.5. By integrating these equa-
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tions and matching to the outer inert solutions
3.1-3.4 at 5 — = we obtain the relations

Z+a
t‘z":az, Zo:= 2q s
z aZ
o= ey 0" ey

(5.6)

where a = 49(1 - ¢)/(eley) for near-
stoichiometric flames. These are all expressed
in terms of the H, concentration, Z, which in
turn is found by solving Eq. 5.4a. The nature of
this structure equation changes depending on
whether the mixture is near-stoichiometric or
if there is an abundance of oxygen. The analy-
sis of this region for stoichiometric flames has
been performed by Peters and Williams (4],
and a similar analysis for near-stoichiometric
flames can be found in the analysis of Seshadri
and Géttgens [6].

§.1. The Oxidation Layer for Near-
Stoichiometric Mixtures

When 1 - ¢ = OC(e), the oxygen is nearly
entirely consumed by the flame, so that the
oxygen concentration is at most O(e) in the

oxidaticn layer. We use Eq. 2.1c to write the '

equation for Z in the form
dzz € laeo I.CHAYF MPO

———g—_

dn’ 2q

PSR CpWr PkaHXo,’

5.7

and the H-radical concentration obtained from
Eq. 2.13 is given by

LeyLley o Xu,0XuH.0.0

VEileo, Lel(? 2232z + a)'”?

) LeyLlen,oXu 0.0 v29%(1 + )?
(5.8)

This is now inserted into Eq. 5.7 to obtain the
equation

d’z 5
— = Z¥NZ + aY"?,
dn’

XH-

Xl/2x3/2

(5.9
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where € has been chosen to be

3/2
€= AYr . Pg(l-‘o,l-zeu,) / Ky
PzUszWrLc.H,oXH,o.b

% Pk
4244 + a)*”?

Alternatively, we can use Eq. 4.10 to express €
in terms of O(1) quantities, which yields

{ LesA,, 4‘/2_q2 }1/2
€= { ———r — .

~1/4
} «1. (5.10)

(5.11)
Dle,, pky;

Since € must be a small parameter, it follows
that pk,,, must be sufficiently large. We re-
mark, however, that it must not be so large as
to violate our previous assumption that k,;, «
k, = 0(87).

Boundary conditions for Eq. 5.9 are ob-
tained by matching to solutions in the outer
inert region at  — o, and to the solutions in
the fuel consumption layer at n = 0. This
matching procedure yields

dz
— = -1 atn=0, (5.12)
dn
dZ

=Z=0 asn—cx, (5.13)
dn

where the first of these is obtained by a single
integration of Eq. 4.8 across the entire fuel
consumption region. For the stoichiometric
flame, a = 0, the solution of Eq. 5.9 subject to
these boundary conditions is readily found to
be

V2

2= A

(5.14)
from which the H, concentration in the fuel
consumption zone is determined from Z(0) =
2'/%, For nonzero values of a, a single integra-
tion of the above system determines Z(0) as
Z(0) = a(s - 1)/2, where s is the root of the
equation

sVs? -1+ iln[s + Vs? ~

Solutions for the remaining quantities foliow
immediately from Egs. 5.6, and their evalua-

Vst =1 = 3270,
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tion at n = 0 provides the necessary matching
conditions for variables in the fuel consump-
tion layer.

The above analysis assumes partial equilib-
rium of the water—gas shift. However, as dis-
cussed in Ref. 4, assuming this reaction to be
infinitely fast overestimates the amount of H,
produced. A correction due to nonequilibrium
effects can be obtained by considering an addi-
tional layer of O(»), » « € <« 1, on the down-
stream side of the fuel consumption zone where
reaction II is not in equilibrium. Peters and
Williams [4]) have performed that analysis so
the details will not be presented here. To ex-
amine this boundary layer one first perturbs
the mass fractions of H, and CO, which are
the relevant quantities in this zone, about their
value at 1 = 0. The resulting equations for the
perturbed quantities are linear and can easily
be integrated subject to appropriate matching
conditions [4]. This procedure is straightfor-
ward and, when the solution is combined with
that of the partial equilibrium layer, the con-
centration of H, at the fuel consumption zone
is found to be

€Z(0)

0 B cemsceemee— —
Xn(0) q(1 + a) Y

(5.15)

where

l1-a

T 1+ a):‘/:\/—D_,,_
1-a [€)\¥?
“ararla)
x{ Leo Ley pk,; K, }1/2

8Le ok 0VZ(0)[Z(0) + a]

The expression 5.15 provides the matching
condition for the variables in the fuel con-
sumption layer and will be applied in Section 6,
but we first reexamine the oxidation layer for
the case when the mixture contains an abun-
dance of oxygen.

5.2. The Oxidation Layer for
Fuel-Lean Mixtures

When ¢ < 1 there is a surplus of oxygen in the
mixture so that a portion of it passes through
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the flame unreacted. The resulting flame struc-
ture has not been considered in previous
asymptotic studies that have employed rate-
ratio techniques. In this case, the structure
equation 5.9 is modified since, to a first approx-
imation, the molar concentration X, takes on
the value X, , = O(1), shown in Eq. 3.2.

All the relations in Eqs. 5.6 remain un-
changed, but now the leading order expression
for the radical concentration is given by

vKivleo, Leii/:z

- uﬂuﬂgoxH;O.b

ez \¥?
x(q(l + a)) ’

and when this is inserted into Eq. 5.7 we ob-
tain

X, (Xo, )"

(5.16)

£Z o Ley,.ol JRylel:
dn’  2q pltic,W; LeyoXu,0.s

" eZ 32
Xk (Xo,.») _—q(l T o)
5.17)

The boundary conditions 5.12-5.13 are un-
changed so that our system takes the simple
form

d*z
e =2Z%?, (5.18)
n
az
I = -1 atn=0, (5.19)
n
dz
d—=Z=O asn — x, (5.20)
n
where € is now given by
€= AYr . Pg(b“'o:l-‘cu:)s/2 vKiv
le'zfpu"rl-ﬁn:oxn,o.b
-2/
x Pk, (X P2
2¢%%1 + a)”* Ozt
1, (5.21)
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or alternatively

Le;A,,(5/4)" 24
DLeo:Xo:.b Pkm.

(5.22)

As in the case of the stoichiometric mixture,
the requirement that e be small implies that
the three-body reaction rate pk,,, is large,
since all other quantities in Eq. 5.22 are known
to be O(1).

The system 5.18-5.20 possesses the solution

Z =

n 2 \1/5 -4
—2-‘/.-5?1'(—‘/?') ] s (5.23)

from which we obtain the needed information
at n =0, Z(0) = (V5 /2)¥%.

As in the preceding subsection, we can con-
sider nonequilibrium effects of reaction II as a
perturbation to the above leading order result.
Again Eq. 5.15 is obtained for the H, concen-
tration at the fuel consumption zone where
now

1~a
v= 5
(1 +a)”* vDy,
l1—-a €

a+a)’ ;
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Leo Ley pk, K: X3,
41 + a )ucg km\/z(O)

We now have the necessary matching condi-
tions to complete the analysis of the fuel con-
sumption region that was begun in Section 4.

6. THE FINAL STRUCTURE EQUATION

In Sections 3 and 5 we obtained solutions for
each species as well as the temperature distri-
bution in both the inert regions and the H,-CO
oxidation layer. These solutions provide the
matching conditions needed to solve the struc-
ture equations 4.23 and 4.24. For our purpose,
we only need to consider the expressions for 7,
Xy and X, . Upstream of the fuel consump-
tion layer. solutions for these quantities are

T e e i e T TR T SR BRI
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given entirely by Eqgs. 3.1-3.4. Downstream of
the fuel consumption layer, the solutions in the
inert region and the oxidation layer can be
combined to construct composite solutions that
are valid in the entire flow field. We now
discuss these composite solutions, as well as
the resulting matching conditions, for bath sto-
ichiometric and fuel-lean mixtures.

6.1. Structure Equaties for Near-

" Stoichiometric Mixtures

For near-stoichiometric mixtures, the solutions
downstream of the fuel consumption layer are
given by Egs. 3.1-3.4, 5.6, and 5.14. Appropri-
ate composite solutions for ¥, X7 and. X}
are given by

Xy =0, 6.1)

Tt ~T, + 8a, - €Z + -, 6.2)
A

X;, (6.3)

~ —-—.—+....
: Eq(l + a)

To leading order in 8 we impose continuity
at x = 0, and the nondimensionalization fur-
ther requires that 7(0*) = 7(0") = 1, which
yields

o .z
@0 2T + a)’
7, =1+ €Z(0) + o(e). (6.4)

The last of these relations, together with Eq.
2.10, provides the two equations necessary to
determine the dimensional temperatures 7,
and 7°.

The matching conditions needed for Egs.
4.23-4.24 are now obtained by expanding the
outer solutions in terms of the inner variable
x = 8. At this stage of the analysis, we have
not explicitly related the two independent small
parameters, € and &, although we have chosen
them such that 8 « €. The matching proce-
dure requires that we retain solutions up to
0(8?), and thus we will now assume that the
solutions 5.6 are valid to all orders in ¢. We
neglect all terms of 0(8°) so that the matching
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conditions are

X;p~—-80-8%%Les/2+ -, 6.5)
Z(0)
Hy, ~ Gm—)(l + 8{LeH2
+8%7Le} /24 ), (6.6)

T~ 1+ 8(f{+a,)+ 83[% +a3§] + e,

6.7
Xy ~0 6.8)
1
Xu, ~ ;](l_+a—)(€Z(0) - 28{q
+6%%¢%2Z,,(0) /e + ), (6.9)

™~ 1+ 8la, + 2q¢) -28% 2qZZ,m(O)/e']

+ e (6.10)

Integration of Egs. 4.23 and 4.24 subject to the
above matching conditions now yields the lead-
ing order result

6= —}';(q; - 2q) + 2q§, (6.11)

where a, = a, = 0. We insert Eq. 6.11 into Eq.
4.23 to obtain the following boundary value
problem for the fuel concentration in the fuel
consumption layer

dz)';

'E:‘ = Dypyl = Ay,

xexpl —ye(gr — 2g) + 29¢]),
6.12)

Ye=-{ at{= ~1/4,

yp=0 as{ - x. (6.13)

The burning rate pt appears as an eigenvalue
of this system. In particular, for stoichiometric
mixtures we note from Eq. 5.10 the relation
€ ~ ypt, and it follows from Eqgs. 4.9 and 5.11
that the rate-ratio parameters ‘4 and D de-
pend on the buming rate as

A~1//pr, D~1/pr.

In general. Eqgs. 6.12 and 6.13 (which includes
the evaluation of the burning rate in terms of
all remaining parameters) must be solved nu-
merically. However, we will fir-* discuss several
limiting cases for which explicit expressions for
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the burning rate can be obtained. Computed
values of .the burning rate as a function of
various parameters will be given in Section 7.

We first consider the limit A « 1. This can
be achieved for example when the chain-
branching reaction becomes comparable to the
chain-propagating step such that A, > A,,.
We should mention that such small values of
A are unlikely for the methane-air flames of
interest here, and the steady-state assumption
for the H radical becomes questionable. How-
ever, it is possible to achieve smaller values of
A by using a different inert or by considering a
different hydrocarbon, for which the basic
flame structure remains the same (cf. the anal-
vsis of propane-air flames in Ref. 12).-In any
case, it is instructive to examine this limit in
order to determine the explicit dependence of
the burning rate on various parameters. In this
limit, the radical consumption layer moves far
upstream into the preheat zone; the radical
concentration assumes the value unity (ie.,
\/l — Ayg ~ 1); and the fuel consumption layer
is limited by a single reactant namely the fuel.
In fact, we can make the coordinate transfor-
mations

ye=Y/(qr — 2q),

¢
¢ 9r — 29
1 | (g - 29
+-2—;] [ 2D N (6.14)

and introduce the parameter m = 2q/(29 -
qr) to write our system in the form

2
Y
2;§—2 = Yexpl-Y - m¢], 6.15)
Y ! 1 29”
= — —In| — - -
£+ oL b1 as ,
Y=0 as é—cx, (6.16)

which is identical to the structure problem

_ obtained by Liidn (9] in the premixed burning

regime of his diffusion flame analysis. The
latter boundary condition implies there can be
no leakage of fuel through the flame. Lifidn
has demonstrated that solutions to the above
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system only exist when ~x <m < 0. In
methane—air flames, the value of m can be
taken as m ~ -2 (4], and thus we are in the
range of physically meaningful solutions. Lifidn
(9] has also provided a correlation function for
the limiting value lim,_ _.(Y + £) which we
use to obtain the following expression for D

2

2
D= -m%-[o.ﬁsohn2 - 1344m +1). (617

Now the definition of D, Eq. 4.10, can be used
in this equation to obtain an expression for the
burning rate, pr, for small values of 4. We
note that since m < 0, the solutions of the
above system do not exhibit turning point be-
havior, and thus no extinction is predicted.

In the opposite limit that A4 — x, radical
production is extremely weak, and thus we
expect the flame to slow down and possibly
“extinguish.” To analyze this limit it is conve-
nient to remove the parameters from the
boundary conditions by introducing the scaled
variables

{={/A, yr=3/A. (6.18)

Our system can then be written

d’,\'

d{* D)\/l—)exp[ ¥( \+m§)] (6.19)

F=-~{ at{=-1, =0 as{—x,
(6.20)

where we have defined the parameters

yu 2 29 L2

% 29 - gf’
D=D/A. (6.21)

We can now exploit the limit of small .
When y is set"to zero in the above system we
recover the structure problem of Peters and
Williams [4). The resulting equation can be
integrated once subject to the boundary condi-
tions to yield D = 15/8. A correction for small
values of v is readily found to be

D ~15/8 + yD,, (6.22)
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where

D, = %{4/1 - m + 2ml),

I= ['w( = w){1 + 2w+ 3w2 + 3w} dw
0

= (0.291....

From the definitions of D and A4, we find that
the rate-ratio parameter D has the explicit
form

. Alleg. Z(04Z(0) + a)*?
D= 2
Ay Leg Pk

[1 vq(l + a)]:v2

€Z(0) ©.23)

If we consider stoich:metric flames (a = 0)
and invoke the partial equilibrium assumption
(v = 0), then the leading order result D =
15/8 does not provide an expression for the
burning rate. Therefore Peters and Williams
(4] used this leading order result to determine
79, and then equated the first two terms in the
expansion for 7,, shown in Eq. 6.4, to evaluate
the burning velocity. In our model, this value
of D is approached in the limit that y — 0.
Since v is proportional to the square root of
the bumning rate (see Eg. 6.21), D = 15/8
represents the critical point at which pv de-
creases to zero. In this limit € — 0, the oxida-
tion layer collapses down to the fuel consump-
tion layer, and the burned temperature, 7,,
decreases to unity.

In Fig. 2 we have plotted vy, which repre-
sents the burning rate for the stoichiometric

1.5

4 8 10
0 2 06

Fig. 2. Piot of v, representing the burning rate for stoi-
chiometric flames. versus the rate-ratio, D. Curve is gener-
ated by solving equations 6.19 and 6.20.
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flame, as a function of D for the fixed value
m = -2 It is clear from Eq. 6.23 that the
parameter D represents the ratio of the
chain-branching reaction, k,, to the chain-
propagating and chain-breaking reactions, k;,
and k,,,. As previously discussed, when D is
sufficiently large the flame has a structure sim-
ilar to the premixed flame regime of Lifidn’s [9)
diffusion flame. The limiting value of the burn-
ing rate is obtained from Eq. (6.17), which can
be expressed in terms of the parameters y and
D as

-

2D

i
For the stoichiometric flame with v = 0 we can
also make use of Egs. 4.9, 4.10, and 6.21 to

obtain the following explicit expression for pu
in terms of original system parameters

2'%4, Le,m*
q°[0.6307m* — 1.344m + 1]
AYr . P(:;\/Kl_l v
X (Ley Leg )"
Pkul"p"}LeH:o
XXy.0.4(1 + @)’

= 2D[0.6307m* — 1.344m + 1) =

pr =

(6.24)

This represents the maximum value of the
burning rate that is achieved when the rate of
radical production is large. It is interesting to
note that k,, and k,,, have opposite effects on
the burning rate. Since Eq. 6.24 is obtained in
the limit A4, — x, there are many radicals
present in the flame structure. The present
theory predicts that the flame will propagate
more rapidly when the fuel consumes these
radicals at a faster rate than they recombine.
When D is decreased, ‘or example by in-
creasing the pressure, the flame speed also
decreases monotonically, as shown in Fig. 2.
Eventually, the chain-breaking reaction be-
comes dominant, the burning rate decreases to
zero, and the flame ceases to propagate. Since
m ~ -2 for the methane-air flames consid-
ered here, the correction term in Eq. 6.22 is
always positive, indicating that the response
curve is monotonic and no turning point be-
havior is predicted. This is in agreement with
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previous numerical results [13] which have
shown that, in the absence of heat loss, the
flame speed will decrease to zero monotoni-
cally and a distinct extinction state does not
exist.

For the two limiting cases discussed above
we are able to determine the explicit depen-
dence of the stoichiometric burning rate on
pressure. In particular, when D — =< we note
from Eq. 6.24 that pt varies with the square
root of pressure. Thus while the burning rate
increases with pressure, the burning velocity is
seen to decrease. For the other limiting case,
Eq. 6.22 for which the velocity approaches
zero, pu has the explicit form (with » = 0)

2443 Le}
AlLe} D}
2 172
AYr . PoPkaKIV(LCH,Lco,)B/
c,WrLley o Xy,0,(1 + @)

pr =

24iLey, 15 }’ 625

x ——————— — go—
Ay Legpkyy, 8

In this case, both burning rate and velocity
decrease as pressure is increased. We also ob-
serve from the above expression that an in-
crease in A,, results in a decrease in pu. This
is in contrast to the strongly burning limit, Eq.
6.24, for which the chain-propagating reaction
was found to further enhance buming.

6.2. Structure Equation for Fuel-Lean Mixtures

The analysis for the fuel-lean mixture is nearly
identical to the stoichiometric case discussed
above, so we omit most of the details. The
form of the structure equations remains the
same as in Egs. 6.12-6.13 and 6.19-6.20. How-
ever, to leading order we now have (X, )° =
Xo,.» = 2Leg!(¢~" — 1). Thus the parameters
A and v, given by Egs. 4.9 and 6.21, respec-
tively, are independent of the burning rate. An
expression for D is obtained by inserting Eq.
5.21 into Eq. 5.22 which yields the dependence
D ~ (pr)™*/*. It follows from Eq. 6.21 that
the rate-ratio parameter D also exhibits this
dependence on burning rate.

In the limit 4 — 0 we again obtain Eq. 6.17
as the expression that determines the burning
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rate. When » =0 we can use Eqgs. 5.21 and
5.22 to write the following explicit expression
for pt in terms of all other system parameters

(5/4)*(A4,,Le,m?)"*

) (LCO:XO;.b)]/z(pklll)3/‘q5/2M5/4

AY; , p3VK;, (Ley )7
2c,Wrley, 0 Xn,0.5(1 + )’
(6.26)
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The burning rate is seen to increase with pres-
sure as pt ~ p'/* and thus burning velocity
decreases with pressure. We also note the di-
rect dependence on equwalence ratio pr ~
(¢~' = 1)7!/2 In addition, pu is proportional
to Aj{* with A, ~ exp(—E,,/R"T?), where
70 decreases with equivalence ratio. Thus the
burning rate decreases as we move further
away from stoichiometry (for 1 — ¢ = O(e)
the analysis of the preceding subsection is ap-
propriate). Reactions k,, and k,, are seen to
have opposite effects on the burning rate, in
agreement with the stoichiometric situation for
this limit. Again we find that the flame propa-
gates faster when the rate of fuel consumption
exceeds the rate of radical recombination.

In the limit that radical production is very
slow, that is, 4, — 0, we again obtain Eq. 6.22.
For the present case, however, D depends
explicitly on pt so that the leading order value
D = 15/8 does provide an expression for the
burning rate. In particular, this equation can
be written in the form

8(1.430:Xo:_h)2/ "/Z

pr =
(34,,Le; )" (pk,,, )"
. 172
AYe PG\/K/I'(I-‘CH_.)B/2
Sc,Wrley o0 Xp,0.5(1 + ay?|
6.27)

so that pr ~ A}/° when A, - 0. Again we
find the dependence on pressure to be pL ~
p‘/‘. As before, although pr ~ (Xq, )" ~
(67! = 1), the Arrhenius dependence of pr
on T° will cause the burning rate to decrease
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as the mixture is made more lean, so long as ¢
is bounded away from unity. From definition
5.21 € is found to decrease as the lean limit is
approached, resulting in a lower reaction zone
temperature (as deterrined by solving Egs.
2.10 and 6.4 simultaneously) and consequently
a lower buming rate. We remark that the
burning rate is small in this limit, and the
flame will probably have been extinguished by
the presence of unavoidable heat loss before
the limiting value 6.27 can be reached. This
point is currently being investigated.

When » = 0 the only place the buming rate
appears in the structure equation is in the
form D574, or (D/y?)~%/4, which is plotted
as a function of ¥ in Fig. 3. Thns curve can be
interpreted as showing the velocity of fuel-lean
flames as a function of the ratio of branching
to propagating reactions. The response is seen
to be monotonic, and the burning rate ap-
proaches the limiting values Eqs. 6.26 and 6.27
as y — « and 0, respectively.

7. RESULTS AND DISCUSSION

Equations 6.19 and 6.20 were solved numeri-
cally to compute the burning velocity as a

_ function of pressure and equivalence ratio for

both stoichiometric and lean mixtures. Appro-
priate values for all parameters were the same
as those used by Peters and Williams [4], and
Seshadri and Peters [5]. In particular, the value
of A/c, was taken to be A/c, =258 X
10~ ‘(7‘/ T,)*" g/cm s, and the Lewis numbers

1.5 2

Fig. 3. Plot of (D/y*)"*’4, representing burning rate for
fuel-lean flames, versus the parameter y. Curve is gener-
ated by solving equations 6.19 and 6.20.




334

were assigned the values Le; = 0.97, Ley =
"1, Ley o = 0.83, Leo, = 1.39, Ley,_ = 0.3,
Le,, = 0.18, and Lecy = 1.11. The average
molecular weight was assumed constant equal
to 27.62 kg/kmol, and the ambient tempera-
ture was taken to be T = 300 K. The kinetic
data, given in [4] and [5] is A, = 2.0 x 10"
cm®/mol -5, A,, = 2.2 X 10* cm®/mol - s, E,
= 16800 cal/mol, E,, = 8750 cal/mol. The
reaction rate k;, has the form k, =

A, T? exp(~E,,/R°T) where R° = 1987
cal/mol K (R = 82.05 atm cm*/mol K) is the
gas constant. Since k,/k,, has a weak temper-
ature dependence, we have approximated this
reaction rate by k,, = A, .x exp(—E,/R°T).
Consistent with this approximation, we have
defined an effectxve pre-cxponenual term
Ay = AnT expl(E, - E,)/R° Tiec). where
we have choscn T, = 1600 K. The remaining
reaction rates and equilibrium constants are
given by ‘/K,,, = 1.22 exp(3067/7), a =
3.86 exp( — 3652/T) K, = 0216exp(7658/T)
ko = 1.51 x T13 exp(758 /R°T).

The procedure we used to determine “e
burning velocity and the temperature 7O is as
follows. For a given equivalence ratio, the un-
burned fuel mass fraction is given by Yy , =

(17.16 + ¢), and a thermochemical calcula-
tion yields the value of T,. Equations 6.19,
6.20, and 6.4, which can be expressed in terms
of original variables as

T, - T° = ez(0)(7° - 1,), (1.1)
are solved simultaneously to determine 7 and
v as a function of p. It actually proved easier
to solve for r’ and p in terms of T° which was
first assigned a value close to T,, and then
gradually decreased. For a fixed value of 79, a
value of € is immediately obtained from Eq.
7.1. The solution of Eqs. 6.19 and 6.20 is used
to determine the pressure p, and the velocity is
then found using the appropriate definition of
€ given in Section 5.

In Fig. 4 we have plotted  and T as a
function of pressure for stoichiometric mix-
tures assuming partial equilibrium of the wa-
ter—gas shift (v = 0). At p = 1 atm, our analy-
sis yields a value for the burning velocity of
t = 36 cm/s. in reasonable agreement with
experimentally measured values [14, 15). The
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Fig. 4. Velocity and fuel consumption-zocne temperature
79 as a function of pressure for stoichiometric flame with
partial equilibrium of water-gas shift. Dashed line indi-
cates results obtained using rate-ratio asymptotics.

velocity is seen to decrease as pressure is in-
creased, again in agreement with observations.
However; the predicted drop is much more
rapid than experiments indicate, and the veloc-
ity approaches zero when the pressure ap-
proaches a critical value p, ~ 26 atm. As
pointed out in Ref. 4, this poor agreement at
elevated pressures is due to deficiencies in the
kinetic scheme. Better agreement can in fact
be obtained by including more reactions from
the starting mechanisms [4].

The dashed lines in Fig. 4 are the results
obtained by setting ¥ = 0 in Eq. 6.19. Recall
that in this limit the structure problem 6.19
and 6.20 reduces to the form found using rate-
ratio techniques, and we will refer to this as
the rate-ratio limit. The rate-ratio approach is
seen to predict somewhat higher velocities than
our theory, most notably at lower pressures. At
p =1 atm the rate-ratio analysis predicts a
value for the burning velocity of v = 51 cm/s.
The slight difference in this number and the
value quoted in Refs. 4 and 6 is due to the way
in which they chose to represent the reaction
rate terms. As pressure is increased the dif-
ference in the two theories is seen to diminish,
and the curves converge as p = p., v = 0. As
discussed carlier, agreement between the two
theories in this limit is not surprising since the
value ¥ = 0 corresponds to v — 0 in our the-
ory.

Figure 5 shows the correction to the burning
rates for stoichiometric mixtures when
nonequilibrium effects are included. For both
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Fig. 5. Buming rate as a function of pressure for stoichio-
metric flame illustrating modification due to nonequilib-
rium of the water—gas shift. Solid line indicates results
obtained using rate-ratio asymptotics.

theories, nonequilibrium effects are seen to
cause a reduction in the burning rate. Again
the difference in the curves is seen to be
greatest at lower pressures. Partial equilibrium
of reaction II becomes a better assumption as
pressure is increased, and the curves converge
asp-=p.

Overall, the agreement between the rate-
ratio approach and the present theory is seen
to be quite favorable for premixed methane-air
flames. In both cases comparison with experi-
mental observations is satisfactory, especially
at lower pressures. The reason for the good
agreement between the two theories is that the
parameter y appearing in our structure equa-
tion 6.19 is typically quite small. For the wide
range of parameters considered in our compu-
tations, rarely did y approach unity. However,
the present analysis can be extended to other
hydrocarbon-air mixtures with the same basic
structure for which larger values of y are pos-
sible. From the definitions of ¥ and A, Egs.
6.21 and 4.9, respectively, any mixture change
that results in a slower propagation reaction
rate or an increased O, concentration will also
yield larger values of y. In those cases, the
structure equations 6.19-6.20 may yield more
accurate results than when rate-ratio tech-
niques are used in the fuel consumption zone.
An additional advantage of the present ap-
proach is the fact that we have retained the
exponential nonlinearity of the reaction rate
term in the fuel consumption layer. This should
enable us te study the response of these flames
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to small perturbations such as heat loss and
stretch. These points are currently being inves-
tigated.

The velocity and the burning rate as com-
puted from the present theory with ¢ = 1 are
plotted in Fig. 6, where results from both par-
tial equilibrium and nonequilibrium .calcula-
tions are shown. Although the velocity
decreases with an increase in pressure, the
burning rate is seen to first increase before
reaching a maximum value and then dropping
off. This trend has been observed both numeri-
cally and experimentally for dilute mixtures
[16), although preliminary data for nondilute
mixtures does not conclusively show this trend.
Measurements need to be made over a wider
range of pressures to determine whether the
trend predicted by the present theory can be
realized for non-dilute mixtures.

In Fig. 7 we compare experimentally mea-
sured velocities and burning rates to values
predicted by the present asymptotic theory and
by numerical calculations with the detailed
C,-chain mechanism discussed in Ref. 17. The
experimental measurements were made in our
laboratory .using the counterflow twin-flame
technique. The numerics are seen to agree
quite well with the experimental results for the
entire range of pressures up to 8 atm. The
asymptotic results show good agreement up to
about 4 atm, after which velocity and burning
rate drop off too quickly. As mentioned ear-
lier, better agreement can be obtained by in-
cluding more elementary reactions from the
starting mechanism.

$0 T — 0.12

V (cvs)

P (atm)

‘Fig. 6. Velocity and burning rate shown as a function of

pressure for stoichiometric flame. Solid line denotes values
obtained when partial equilibrium of the water-gas shift is
assumed.
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Fig. 7. Comparison of experimentally measured velocity
and burning rate with values obtained numerically and

with present asympiotic theory. Solid diamonds denote
velocity.

The temperature at the leading edge of the
flame 7° and the burning velocity of near-
stoichiometric flames were also computed for
several values of equivalence ratio. As the mix-
ture was made more lean, the characteristic
temperature of the fuel consumption zone T°
was found to decrease, as expected. However,
computed burning rate and velocity profiles
first show a slight increase until ¢ ~ 0.85, after
which pr decreases with further decreases in
equivalence ratio. If we examine the explicit
expression for pr, found by using Egs. 5.10
and 7.1,

~ A 4
. 3(7,-T7°
(pr)’ ——(—”--—)—
AYF.upzﬁ-,(l"ec):l"eﬂ:)3/2 Ky
R(f°)chu}1£u:oxn:o.b

Pklu
WU+ a '

we see that although the difference between T,,
and T, decreases with decreasmg 79, the other
quantities in Eq. 7.2 increase. These factors
lead to the increase in velocity as ¢ is de-
creased in the range (1.0, 0.85). We remark
that the same incorrect trend is obtained if y
is set 10 zero in our structure equation 6.19,
and therefore this erroneous prediction is not
due to the activation-energy asymptotic tech-
niques that we employed in the fuel consump-

(7.2)
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Fig. 8. Velocity and burning rate of lean flame as a func-
tion of pressure for three different values of equivalence
ratio.

tion zone. Rather, the discrepancy is most likely
due to deficiencies in the simplified kinetic
scheme. The increase is very slight (roughly
10%), suggesting that higher-order terms that
we neglected can reverse this trend. Indeed,
Seshadri and Gottgens [6] and Bui-Pham et al.
[7] have included many more intermediate re-
actions in their rate-ratio asymptotic analyses
of lean methane-air flames, and they report
good agreement with experiments, cf. Fig. 13
of Ref. 6. The inclusion of these additional
reactions 1n our analysis will also yield the
appropriate trend, although the additional pa-
rameters that enter into the analysis greatly
complicate the details. It is clear that, if one
desires to compute accurate values for burning
velocities over a wide range of parameters,
many intermediates need to be retained in the
analysis.

As the mixture is made more lean such that
1 — ¢ = O(1), an abundance of oxygen passes
through the flame unreacted and the structure
equation discussed in Section 6.2 becomes ap-
propriate. As mentioned earlier, the system of
equations, 6.19 and 6.20 remain the same but
the definitions of D and y change. In Fig. 7 we
show the velocity of these lean flames as a
function of pressure as computed for several
values of equivalence ratio. Now the flame is
seen to burn weakest as the lean limit is ap-
proached and, near this limit, the velocity in-

. creases with ¢. As ¢ is increased further such

that 1 — ¢ = O(e), the analysis of Section 5.2
is no longer valid, the structure of the oxida-
tion layer changes, and the analysis of Section
5.1 is appropriate.
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8. SUMMARY AND CONCLUSIONS

The structure of premixed methane-air flames
with a detailed four-step kinetic mechanism
ha; been studied theoretically. The basic flame

structure, first identified by Peters and Williams-

[4], remains the same as in previous rate-ratio
asymptotic analyses. However, in the present
work the effective activation energies of the
intermediate reactions describing the competi-
tion of fuel and oxidant for radicals are as-
sumed to be sufficiently large such that activa-
tion energy asymptotics can be employed in

the fuel consumption zone.
Our results include the evaluation of the

burning rate in terms of pressure, equivalence
ratio, and the ratio of the competing rates of
the branching reaction to the termination reac-
tion. Although limitations of the simplified ki-
netic scheme were noted in the analysis of
near-stoichiometric flames, for the most part
the trends are found to be in qualitative agree-
ment with experimental observations, cf. {14,
15]. For the adiabatic conditions considered
here, the burning velocity does not exhibit
turning-point behavior (i.e., extinction), in
agreement with numerical computations [13].
We remark that although the activation en-

ergies of the intermediate reactions are not
significantly large, our results suggest that they
are sufficiently large to permit the use of acti-
vation energy asymptotics. Our results agree
quite well with those obtained using rate-ratio
asymptotics, and in fact, the structure equation
found with rate-ratio techniques can be recov-
ered as a limiting case of the equation that we
have derived. Specifically, by setting y = 0 in
Eq. 6.19, the equation first derived in Ref. 4 is
obtained. For the premixed methane-air
flames of primary interest here, the value of y
is typically quite small. However, it is possible
to consider other hydrocarbons or to modify
the mixture in such a way as to obtain larger
values of ¥ without changing the basic flame
structure. For such situations there will cer-
tainly be less quantitative agreement between
the two theories. As discussed in Section 6,
qualitative differences will also arise for larger
values of y. For example, the RRA theory
predicts that k,, is always terminating, while
the present theory indicates that its role is
reversed for larger values of y. One advantage
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of the method proposed here is that the non-
linear reaction rate term is retained in the fuel
consumption zone. Experience with one-step
chemistry suggests that such nonlinearities can
realistically capture a variety of flame re-
sponses to perturbations. Although Damkéhler
number asymptotics and rate-ratio techniques
are needed to analyze many of the layers within
these complicated flame structures, by employ-
ing activation energy asymptotics in the fuel
consumption layer, perhaps we can better study
the response of these hydrocarbon flames to
heat loss, stretch, etc.

To illustrate our method we have used the
most basic kinetic mechanism, which repre-
sents a significant simplification from the origi-
nal starting mechanism, and consequently there
is a certain degree of error inherently present.
However, more intermediate reactions can be
retained, and in addition several assumptions
regarding the relative thickness of the various
zones can be relaxed in order to gain increased
accuracy. Seshadri (cf. Refs. 5-7) has done a
great deal of work in refining this mechanism
to obtain much-improved results. The results
of those studies agree favorably with the de-
tailed numerical calculations of Smooke and
Giovangigli [2] and Egolfopoulos et al. [15], as
well as the experimental measurements re-
ported in Ref. 15. The same improvements can
be made in the present study to obtain better
agreement with numerics and experiments.

As a final comment, we remark that the four
global reactions used in the present study can
also be used to investigate the structure of
methane—air diffusion flames, as has been done
using rate-ratio asymptotics (cf Refs. 18-20).

This work was supported by the National Sci-
ence Foundation and the Air Force Office of
Scientific Research, under the technical monitor-
ing of Dr. M. K King and Dr. J. M. Tishkoff,
respectively. The authors would like to thank Mr.
C. J. Sung and Mr. G. Yu for providing the
numerical and experimental data, respectively,
shown in Fig.'7.
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Appendix C

Analysis of Thermal Ignition in the Supersonic Mixing Layer

H. G. Im,* B. H. Chao,t J. K. Bechtold,} and C. K. Law§
Princeton University, Princeton, New Jersey 08544

Ignition in a laminar supersonic mixing layer between two paraliel streams of initially separated reactants is
studied both numerically and through the use of large activation energy asymptotics. The asymptotic analysis
provides a description of ignition characteristics over the entire range of system parameters. In particular, it Is
demonstrated that, for smali values of viscous heating, the ignition distance scales approximately linearly with
the freestream Mach number, whereas for large viscous heating it decreases rapidly due to the temperature-sen-
sitive nature of the reaction rate. This indicates the potential of using local flow retardation to enhance ignition
rather than relying solely on external heating. The asymptotic analysis further identifies several distinct ignition
situations, ylelding results that compare well with those obtained from the full numerical calculation. The effects
of flow nonsimilarity are also assessed and are found to be more prominent for the mixing layer flow in compari-

son to the flat-plate configuration studied previously.

Introduction

HE study of combustion within supersonic boundary-layer

flows has generated much recent interest due to its relevance
in the development of scramjet engines. The most essential feature
of supersonic boundary-layer combustion, in contrast to the sub-
sonic situation, is that the high-speed flow contains a considerable
amount of kinetic energy that can be converted to thermal energy
through viscous dissipation, thus facilitating ignition of the com-
bustible mixture.

In a recent study' we investigated the effect of viscous heating
on the ignition of a supersonic stream of premixed combustible
over a flat plate, using full numerical computation and large acti-
vation energy asymptotics. Several distinct ignition regimes were
identified, depending on the relative magnitude of the external heat
transfer from the hot boundary and the internal heat generation due
to viscous heating. The analysis of each regime was shown to
properly capture the ignition characteristics.

Whereas the flat-plate configuration studied previously! pro- .

vides a simple model problem, many applications of interest, most
notably the scramjet engine, involve the compressible mixing layer
between fuel and oxidizer supplies.? In contrast to the flat plate,
the problem is nonpremixed in nature; therefore mixing of the re-
sctants must occur to achieve ignition. Furthermore, the internal
generation of heat in the presence of a shear layer will vary de-
pending on the difference in velocities of the two paralle] streams.
Thus the ignition characteristics of the mixing layer are expected
to be different from that of the supersonic flat-plate flow, for
which the no-slip condition at the wall always results in large
amounts of viscous heating. Therefore, in this paper we extend our
previous work’ and consider a mixing layer configuration to pro-
vide & comprehensive treatment on the subject of ignition within
supersonic boundary-layer flows.

The effect of viscous heating on the ignition in a supersonic
mixing layer was first considered asymptotically by Jackson and
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Hussaini,} in which nearly equal freestream temperatures and ve-
locities were assumed. Ju and Niioka* allowed for an §(1) temper-
ature difference between the two freestreams, nonetheless restrict-
ing the analysis to small velocity differences. A pseudomultistep
chemistry mode] was also used. A more thorough treatment of (1)
viscous heating in the mixing layer was subsequently made by
Grosch and Jackson,’ in which Jackson's and Hussaini’s previous
analysis® was extended to render it valid over a wider range of pa-
rameters characterizing the strength of the ignition source. A nu-
merical and asymptotic analysis of the evolution from a weakly re-
active state to the fully developed laminar diffusion flame was also
provided, yielding & more saccurate description of the diffusion
flame structure. It was further emphasized that, because combus-
tion in the mixing layer can introduce additional flow instabilities,
which in tum enhances reactant mixing, it is of fundamental im-
portance to investigate the effect of chemical reaction on the flow-
field. Furthermore, a good understanding of ignition and flame
propagation in an idealized laminar mixing layer provides useful
information for more complicated studies involving chemically re-
acting flows.

The present study extends the work of Grosch and Jackson® by
treating all possible weakly reactive regimes that can exist in su-
personic mixing layers prior to the point of thermal runaway. This
includes the case, not considered in Ref. 5, in which the heat for ig-
nition generated by the hot stream and through viscous heating are
comparable. Furthermore, for each ignition situation, we derive
explicit expressions for the minimum ignition distance, which is
then mapped out over the complete range of system parameters.
The results compare well with numerical computations. The sig-
nificance of flow nonsimilarity is discussed, and comparisons with
the flate-plate case' are also made.

In the following section, the model problem is formulated and
the distinct ignition situations are classified. Next, the numerical
solutions for the full system of equations are presented. We then
proceed with the asymptotic analysis, and the results are compared
with numerical predictions. Finally, we add further discussions
and concluding remarks.

Formulation

As shown in Fig. 1, we consider a stream of reactant 1 with re-
actant mass fraction ¥, ., density § .. velocity &.., and tempera-
ture 1., flowing parallel to a stream of reactant 2, with £ ., § _.
G_..and T_.. We assume a zero pressure gradient exists across
the boundary layer such that the inert solution has a self-similar
form. The two initially separated reactants diffuse into one anoth-
er, thus penmitting ignition to occur when the temperature is ele-
vated to a sufficiently high value. Chemical reaction is weak near
the leading edge of the mixing layer, and it evolves gradually in
the downstream direction. Eventually an abrupt temperature rise,
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Fig.1 Schematic of the flow configuration.

corresponding to thermal runaway, occurs at a certain location
within the mixing layer. We are interested in analyzing the reac-
tion zone structure up to the point of ignition to obtain explicit ex-
pressions for the minimum ignition distance as a function of all the
systemn parameters. We assume that a one-step, overall reaction,
with an Arrhenius temperature dependence, takes place between
species 1 and 2 to form the product. We further assume constant
propemes such as specific heat c,. density-weighted viscosity § {1,
and unity values for the Lewis and Prandtl numbers. The conserva-
tion equations for momentum, mass fraction of species /. and static
energy in the supersonic mixing layer are then given by’

freffr=0 M

o’y, L rpoge

P ‘3 2§f a; = QYT P exp(-T /Ty (2)

a A fan ~2¢r% ag = - LY{Y{T" """ lexp(-T /T)
2ufr Mz a-n’ 3)

where ( )’ denotes d/dn. and the preceding equations are to be
supplemented by the ideal-gas equation of state. The nondimen-

sional temperature 7 and the mass fraction for species i, ¥, are de-
fined in terms of the original variables by T = ¢ T/q ¥, .andY,=
§./6.% ;... respectively. Here, § is the heat of reaction per unit
mass of species 2, and o; is the stoichiometric mass ratio of each
species relative to species 2, such that 6, = 1. Other parameters in-

clude the nondimensional activation temperature 7, = ¢ (E,/Ro)/
§¥,_.. ard the viscous heatmg parameter i = (1/2)(‘{ - l)M T.

(1- AP, where Y= c,/c, 1= i_ /.. and

M_ = o/ yRF W

is the Mach number of the upper freestream. The variables £ and 1y
are the normalized Howarth-Dorodnitsyn variables defined as

n="°+(29-u- )" fipas )
o (B S (2

and f is the stream function y(x, y) normalized as

S = Wx, 2P wfiall )R ©

Here p and q represent the reaction orders of species 1 and 2, re-
spectively, and 7 is the temperature exponent of the pre-exponen-
tial reaction rate term. In Eq (4). Ny denotes a shift of the origin: it
may remain indeterminate.® but we are free to translate the coordi-

nate such that i} = 0 at the origin. We note that the streamwise co-
ordinate § is proportional to the frequency factor B and hence can
be interpreted as a reduced Damkshler number, representing the
ratio of a characteristic flow time to a characteristic reaction time.
In these expressions, W is the molecular weight of species i, W the
average molecular weight, and x and y the physical coordinates
parallel and normal to the stream. The last term in the energy equa-
tion (3) represents the contribution due to viscous heating, i.e., the
amount of kinetic energy that is converted to thermal energy with-
in the mixing layer.

Equations (1-3) are 1o be solved subject 10 the boundary condi-
tions

fre)=1, f©)=0, flesm=h ™
Yi(eo, D =Yoo,  ¥(-00,{)=0 ®)
Ve D=0, Yy-ewf)=1 ©
Tee,0)=T., T(-e0,{)=T . =T.-B (10)

It may be noted that Eqgs. (1) and (7), which govem the flowfield,
are decoupled from the energy and species equations and can be
solved independently to yield the self-similar Blasius profile for
mixing layer flows.%'° Without loss of generality, we consider 0 S
A < 1, so that the upper stream is always at a higher velocity. The
case A = 1, corresponding to 2 uniform parallel flow of initially
separated reactants with no viscous heating, has been studied by
Lifidn and Crespo.!! In the main text, we consider the upper stream
1o be the hottet of the two, i.e., B > 0. For the case B < 0, ignition
can occur near the slower stream when IBi2 p. The solution for
this case can be obtained by redefining the coordinate system, as
discussed in Appendix A for completeness.

Coupling functions that relate the mass fractions of species 1
and 2 to temperature -are found by integrating appropriate chemis-
try-free linear combinations of Eqgs. (2) and (3), yielding

Y] = T.."’YL_ -(B +Y|_-)€ + ug(] - g) - T (ll)
V=T ~B-DE+uE -8 -T (12)

where we have made the convection-free coordinate transforma-
tion

for Az1

(-£)/70-2)
{ 0sEs<1
erfe(M/42)72 ford =1

a13)

The relations (11) and (12), together with the previously deter-
mined flowfield, can now be inserted into Eq. (3) to reduce the
problem to a single equation for T.

In the weakly reactive state, the reaction term in Eq. (3) is small
and can be neglected in a first approximation. The frozen tempera-
ture Ty is governed by

o'T
3?1 =-2 (14)

which, when solved subject to the boundary conditions (10), yields
T;=T. - o§-p§’ (15)

where o = § ~ u. The frozen solution (15) serves as the initial
condition for the numerical solution and as the basic solution for
the asymptotic analysis. As will be discussed later in the asymptot-
ic analysis, the point of the maximum frozen temperature identifies
the ignition location for systems with large activation energy and
varies with the system parameter a. which indicates the relative
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importance of either the external ignition source represented by B 1100 —~— — ™
or the intemnal source represented by 1. ~—— Numerical, A= 0 : :h 1
In the next section, we shall study the ignition dynamics for the 1080 | < -v-- Numerical, A= 1 | : ]
preceding two cases through direct numerical integration of the en- emerical, A = 1 ¢ : J
ergy equation (3) with the boundary conditions (10). We shalithen ™ [ = Asymprotic i !
proceed to an asymptotic analysis and derive explicit expressions 1060 : I 7
for the ignition distance as functions of all relevant parameters. Nonsimilar . |,
T, L : N ]
Numerical Solutions e 1060 5 ;
Equations (3) and (10) are solved numerically using a second- 1020 A ]
order finite-difference scheme with implicit determination in the n s Locally-similar __ i/
direction and marching along the streamwise coordinate {. The & . \:E' . ]
step size of { is readjusted as the solution approaches the ignition 1000 - + 1
point to capture the abrupt temperature rise. In the present calcula- : ‘B iA ]
tions we have set p = g = r = | for simplicity. The parameter values N : L .
used are § = 1.0 x 10* kcalkg. cp= 0.25 kcal/kg-K, E, = 60 kcal/ 1011 102 1013
mole, and y = 1.4, which are typical numbers for hydrocarbon/air . .
mixtures. Boundary conditions for species concentrations are g
taken tobe f'5,_. = 0.5, 1= = 0.3 with 6, = 3, which correspond %)
to the scaled values ¥, = 1.Y, =02, 1100 ——rrr
The streamwise evolution of the temperature profile within the )
mixing layer is illustrated in Figs. 2a and 2b. Figure 2a corre- 1080 -~ Numerical, A = 0 ]
sponds to the subsonic case in the absence of viscous heating (M., [ . H
=0), with ¥ _=1000K, f _ = 500K, and A = 0. This particular | " Asymprotic ! Nonsimilar ]
case is similar to the problem studied in several previous hot 1060 + : : 1
boundary ignition analyses.!%!! It is seen that as { increases, the
maximum temperature at first rises gradually, but then exhibits & T . 1060} ]
dramatic increase. resulting in the thermal runaway behavior at {; fmex _ ;
= 1.64 x 10'3. Solutions for the other extreme case, for which vis-
cous heating is the only heat source, are shown in Fig. 2b, where 1020 + _cimg
wehaveset F.=7 __ =500K, A =0, and M_ = 4.472 so that the Locally-similar ?
H H 9
1200 b € (x10'3) = g ; i 1010 101 1012
1.34 g
1100 £ : . 1.534 b)
€ increasing 1.612 Fig. 3 Streamwise variation of the maximum temperature for a) the
100" ] .629 hot-stream case with same parameter values as in Fig. 2a: vertical lines
* represent asymptotic solution, Eq. (24), with A, leading-order result
1.636 only and B, additional subdominant term retained; b) the viscous heat-
900 1.637 ing case with same parameter values as in Fig. 2b: vertica) lines repre-
sent asymptotic results for C, fully nonsimilar solution, Eq. (33); and
D, locslly similar solution, using Eq. (34).
800
. initial temperature profile becomes symmetric about £ = 1/2 and
700 - 0.1 02 03 0.4 0.5 the maximum temperature takes the same value as that in Fig. 2a.
v ’ ) As a result, the most rapid ternperature rise is seen to take place
. § near § = 1/2, and thermal runaway occurs at { = 1.23 x 10'2,
The streamwise variation of the maximum temperature for the
1400 v T T T \ above two cases is plotted in Figs. 3a and 3b, respectively. The ex-
{(x10') =0 j istence of a critical ignition distance {, is clearly illustrated. Figure
1300 | 064 3a represents solutions in the absence of viscous heating, and
l'OO ] curves are drawn for two different values of A, with all other pa-
|.177 : rameters taken to be the same as in Fig. 2a. The two curves demon-
1200 1.218 b strate that, for a given strength of the ignition source, i.e., for a
T § increasing 1228 fixed value of B, {, increases as the flow velocity of the slower
1100 b 1'231 b stream increases. This indicates that the ignition distance is pro-

1.232
1000

0.2 0.3 0.4 0.5 0.6 0.7 0.8
b
Fig. 2 Evolution of the temperature profiles as computed numeri-

cally for a) the hot-stream case with . x 1000K, 7. « SOOK. M_=0
and b) the viscous heating case with F_ = 7 = $00 K, M_ = 4.472.

portional to the velocity at the ignition location. It should be point-
ed out, however, that the dependence of {, on A is quite weak. This
is physically reasonable given that ignition occurs near the hot
boundary, § = 0, which moves with velocity &, (see Ref. 10).
Thus an increase in & _., results in only a slight increase in the ve-
Jocity field near the opposite boundary at § = 0. The asymptotic
analysis of the next section also reveals the weak dependence of {,
on A for this particular ignition situation.

To assess the importance of retaining nonsimilar effects, we
have also solved the problem by neglecting the /0] term in
Eq. (3). The results are plotted in Fig. 3a, where the curves termi-
nate at a point where they approach an infinite slope. Thus for lo-
cally similar flows, ignition is identified as the turning point of
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these curves, in contrast to the full evolutionary problem that ex-
hibits thermal runaway. These locally similar solutions are seen to
underestimate the ignition distance, consistent with previous re-
sults.! The present results, however, show a more significant devi-
ation between the actual value of {; and that obtained with the
local-similarity approximation. This can be explained by compar-
ing the relative magnitudes of the diffusion and convection terms
for both flow configurations. In the mixing layer, the reaction zone
is broader (in physical scale) than it is for the flat plate, thereby re-
sulting in smaller transverse temperature gradients whereas the
streamwise convection term is larger due to the greater flow veloc-
ity at the ignition location. We note that, in the flat-plate configu-
ration,' the local streamwise velocity at the ignition point was
found to be very small when ignition occurs near the hot plate. A
more detailed discussion of nonsimilarity effects will be given in
the next section.

Figure 3b shows a similar plot of the maximum temperature
evolution for the case of ignition induced purely by viscous heat-
ing, where parameter values are the same as those used in Fig. 2b.
When viscous heating is included, it is difficult to compare the de-
pendence of §, on A in a straightforward manner as is done in Fig.
3a, since variations in A affect the viscous heating term, which in
tum shifts the maximum temperature location. The curves shown
in Fig. 3b are for the case A = 0 specifically, and it is clear that the
local-similarity approximation substantially underestimates the ac-
tual ignition distance.

Asymptotic Analysis

In this section we study Eqgs. (1-3) and (7-10) using large acti-
vation energy asymptotics. We consider the weakly reactive state
and identify the ignition distance {; as the point at which we ob-
serve either thermal runaway or turning point behavior.

As mentioned earlier, the fiowfield is known.>!® Thus when
Egs. (11) and (12) are used we only have to consider a single equa-
tion for T, with appropriate boundary conditions. These can be ex-
pressed in terms of the § coordinate as

“(m) 129°T oT
[%l_] 5—{;—2—2§[1 -Q —l)ilaz

= ~LYPYIT TP lexp (=T, /T) -2»[%‘:173-]2 (16)

TO.0=T.. TA.D=T.. TE 0= T, an
Here the frozen profile T, given by Eq. (15), provides the initial
condglion at the leading edge ({ = 0) of the mixing layer. We use ¢
= T /T, as the small parameter in the analysis, where T, is the
maximum value of the frozen temperature.

The parabolic form of the frozen profile (15) and the numerical
results shown in Fig. 2 suggest that three distinct regimes of igni-
tion should be considered depending on the range of the parameter
o, as shown schematically in Fig. 4. When a > 0 (Fig. 4a), the fro-
2en temperature has 3 maximum value of T, = T, at § = 0. This is
called the hot-siream case, since the dominant ignition source is
the hot temperature of the freestream. Here the linear behavior of
the frozen temperature near § = 0 implies that reaction is confined
within the layer of {(€) thickness provided the activation energy is
sufficiently large. On the other hand, when a < 0 (Fig. 4¢), the
maximum temperature T, = T, + a?/4y is sttained in the interior of
the mixing layer at § = (1 ~ B/u)/2 > 0. In this viscous heating
case, ignition is characterized by the intemal viscous heating rep-
resented by the parameter 1. The structure of the mixing layer con-
sists of two frozen outer zones of ((1) extent. 0<E <& and & < &
< 1, separated by a thin reaction zone. The parabolic form of I,
near its maximum suggests that the reaction zone has €(Ve ) thick-
ness. Finally, as o approaches zero (Fig. 4b), i.c., when P and p are
somparable, neither of the analyses is valid and thus a different an-
alytical treatment is required. In this intermediate case, the maxi-
mum frozen temperature occurs at § = 0, but now the reaction zone

is of &(Ve ) near its maximum, which is broader than the case
shown in Fig. 4a. We now proceed to analyze Egs. (16) and (17)
for these three different cases in sequence.

Hot Stream Case: 0> 0

As observed in Fig. 4a, in this case the reaction is confined to
the thin layer of €(€) near £ = 0 at which the frozen temperature at-
tains the maximum value of 7,. To study the structure of this lay-
er, we introduce the stretched coordinate X = ak/c and seek an
inner solution of the form

Tialt. §) = T, () + €8, (. §) + Oe?) (8)

After substituting the:¢ expansions into Eq. (16), and using the as-
ymptotic behavior of the flowfield (see Appendix B)

(&) -€ue sto0 a9

we can write the leading order structure equation as

2

a’6
x’a—;“ = -A (% - a6,) "exp(8, -~ 1) (20)
X
where
cec-lyp Tr-p-c‘l
A= 'q; = exp(-T,/T.) @n
[+ 3 7% 3

Equation (20) is to be solved subject to the boundary conditions

26,
90(0. C) =0, Tx (oo, ;) =0 (22)

where the latter condition is obtained by matching to the outer so-
lution, which is expanded as To (€, {) = TH(E) + eDy(E. {) + ().

The previous system is jdentical to that found by Lififn and
Crespo'! for a uniform paraliel flow of initially separated reac-
tants. This implies that, when the hot boundary is the dominant en-

o— Reaction zone ~2/a

(c)
a<d
B<w

Fig.4 Schematic of the frozen temperature profile in §{ coordinate for
a) the hot-stream case, b) the intermediste case, and ¢) the viecous
heating case.




»
-

IM, CHAO, BECHTOLD, AND LAW: THERMAL IGNTTION IN MOXING LAYER 345

104F o Numerical oo
=1
1013 o
M, 1
1012 1‘
A=0.5
L J
‘o” E— ‘ . d
1 10

Fig. § Log-log plot of the predicted ignition distance as » function of
the freestream Mach number for the hot-stream case.

ergy source, the ignition characteristics are minimally affected by
the additional effects of viscous heating in the interior of the
boundary layer. The only modification here is the parameter a,
which represents the combined effects of the temperature differ-
ence of the two streams P and the viscous heating effect p.45

Equations (20) and (22) are solved numerically, and the solution
for @ is found to have a turning point at a critical Damkéhler num-
ber A; beyond which no solution exists. The vaiue of A; can be
evaluated numerically as a function of the parameter a, after
which the minimum ignition distance can be obtained from the
definition of A in Eq. (21), yielding

o' e

P r=-p-g+}
yl.- g

£ =4,(a) exp(T,/T,) 23)

For g = 1, Lifi4n and Crespo}! provided a useful correlation for the
ignition Damkohler number as a function of the parameter a in the
form

Aj(@) = 2722 - a)/(1 ~ @)? 24

which is valid for 0 < & < 1. Substituting Eq. (24) into Eq. (23), we
obta’n an explicit farmula for {,.

Equation (23) reveals that the leading-order value for the nondi-
mensional ignition distance §, is a function of §t, which groups the
two parameters M., and A. There is no additional dependence on A
50 that, in the absence of viscous heating (M., = 0), {; is unaffected
by changes in A to leading order. This implies that variations in the
flowfield at the cold boundary have only a secondary effect (see
Appendix B), in agreement with the previous numerical results.

We also note that the structure equation (20) is Jocaily similar.
Furthermore, the matching condition (22) shows that there is no
heat transfer between the inner structure and the outer frozen flow
up to {Ye). Consequently, the effect of nonsimilarity is of higher
order and does not appear in the leading-order analysis, as was true
for the flat-plate flow.! However, the numerical result shown in
Fig. 3a seems to suggest that there is a larger difference between
the similar and nonsimilar solutions for the present study as com-
pared to the “subadiabatic wall case” of the flai-plate analysis.'
This can be explained by examining the relative order of magni-
tude of the diffusion and (nonsimilar) convection terms in the
equations governing the structure for each flow configuration. It
can be readily shown that the ratio of convective to diffusive terms
in the structure equation is C(1/t.e~2) for the present problem.
which is larger than the ¢X€?) ratio for the flat-plate problem. As
discussed in the previous section, the physical implication is that
the streamwise flow velocity at the ignition location is relatively
larger for the present problem than for the flat-plate problem.

Therefore, the nonsimilar terms can be expected to play a some-
what larger role in the mixing layer situation, although they still re-
main as a higher order effect.

In Fig. 3a the vertical dotted lines A and B represent the ignition
distance for M., = 0 obtained from Eq. (23). For the line denoted
by A, only the leading-order term describing the behavior of the
flowfield near the hot boundary is retained (see Appendix B),
whereas for line B, a constant subdominant term is retained as
well, as is done by Lififn and Crespo.!' The latter case requires
that t.€ be replaced by t~(2re/a) in Eq. (23). Although both re-
sults are asymptotically equivalent, the resulting values for the ig-
nition distances are seen to differ by a considerable amount. This is
due to the fact that the value of a used in the calculation is quite
small.

The predicted ignition distance for the hot-stream case as a
function of the freestream Mach numbeér is shown in Fig. 5 for sev-
eral values of A. We have chosen to plot the quantity M_{,, since it
is directly proportional to the actual ignition distance in physical
length. The numerical and asymptotic results agree quite well, ex-
cept for large M_, when viscous heating becomes important. When
M, is sufficiently large, the ignition point shifts to the interior of
the boundary layer. The present analysis is therefore no longer val-
id, and the analysis of the next section becomes appropriate.

As a final comment for the hot-stream case, in a uniform paraliel
flowfield, i.e., A = 1, an increase in M., does not generate addition-
al heat, and the ignition distance simply increases linearly, as
shown in Fig. 5. In the presence of shear between the two streams,
i.e., when A # 1, M_{, is seen to achieve 2 maximum value, after
which viscous heating causes it to decrease, thereby enhancing ig-
nitibility.

Viscous Hesting Case: ¢ < 0

We now consider the case when viscous heating exceeds the ab-
solute value of the temperature difference between the two
streams, i.c., B! < p. In this case, the frozen temperature profile
(15) achieves its maximum value of T, = T., + a2/41 at the location
& = (1 - B/W)/2, in the interior of the mixing layer. The structure
of the mixing layer, shown in Fig. 4c, consists of two (1) frozen
outer zones separated by a narrow diffusive-reactive zone near
§ = £.. The parabolic form of Tynear § = £ suggests that the appro-
priate stretched inner coordinate is Z = yj (§ - E)/Ve . such that

£ =W = £ M =N +o(1) (25)

where [1 - ' (M1 — A) = &.. We seek a solution for the temper-
ature in the reaction zone of the {~rm

TalZ. D =T/(2) + €6(Z. ) +£¥8,(Z.0) + O€?)  (26)

To achieve proper balancing of the diffusion and reaction terms,!
we introduce the rescaled Damkuthier number as

£ lB0-8)Ey T
JFoplrrmpra-n1°

exp(-T,/T) @D

Afier substituting the expansions into Eq. (16), the structure equa-

tions at the first two orders become
3290 ale' e
— =0, —=-Aexp(8 -2} 28)
az’ 2z’ °

As discussed in the flat-plate study,! integration of the preceding
equations provides boundary conditions and a jump condition for
the outer temperature profile, which is expanded in each region as

T (8.0 = T;(5) + €05 €. §) + ™) 29)

T |
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We substitute Eq. (29) into Eq. (16) and introduce the new stream-
wise coordinate T= (VR A) to obtain an equation for the lead-
ing-order temperature perturbation of the form

¥, 201-(1-ME) ¥ _
& I (/a-n) ot

0, &=§, (30)

Matching solutions of Eq. (30) with the inner solutions (28) yields
the conditions

®,(0.7)= &, (1, 1) = &) (E.~=) =0 (31)

(] - Res-Fen

= —exp[@y(§,.7) +17) (32)

The system (30-32). which has also been obtained independently
by Grosch and Jackson,’ has a similar form to that appearing in our
previous study.! The solution of the present system exhibits ther-
mal runaway at T;, which is determined as a function of the two pa-
rameters £ and A. The numerical solution of 1, as a function of &,
for several values of A is shown in Fig. 6. From the definition of 1;,
we can readily determine the ignition distance as

& = explt,(§.1)]

" 12
xJE:f[f M)/ (1-2))exp(T,/T ) 33)

(] -gr) pg:yl,.'-r('-p-q’l

We remark that in the present analysis, nonsimilar effects have
been accounted for in the outer, frozen regions, and thus the solu-
tion possesses evolutionary-type behavior similar to that of ther-
mal explosion. If the nonsimilar term 9/dt in Eq. (30) is neglected,
then the equation can be easily integrated to yield an explicit ana-
Iytical solution which possesses a turning point at

€)= -1-(.[E( - E)]. 34)

This locally similar result, however, underestimates the ignition
distance by a substantial amount as shown by the vertical dotted
lines C and D in Fig. 3b.

Intermediate Case: (|« 1
Neither of the preceding analyses is valid when il 1, or
more specifically a = ¢ /€ ), which occurs when the two ignition

3-5 L] T T T
- -&s 0
—--A=025

3.0 A=0.5

A=0.75

4GeD)
2

20

1.5 ) g - .
0.0 0.2 04 0.6 0.8 1.0

Fig. 6 Functionsl relation between the streamwise 1, and transverse
&, location of ignition for the viscous heating case for various .

100 1
|
102 |
4, ]
104 |
: 1
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r

Fig. 7 Functional relation between the ignition Damkohler sumber
Ay s and T for the intermediate case for g = 1.

sources generate comparable amounts of heat. We now consider
this limiting case to provide a complete description of ignition in
compressible mixing layers.

We rescale o as & = /E&, introduce the stretched coordinate X
= JBE /Je, and seck solutions for the inner temperature profile as

Ta(X., §) = T;(X) + €68¢(X, §) + Xe*?) 35

To leading order, the inner structure equation is found to be

36
x’a—x,? = -A, X%exp(8,- X*-TX) (36)

where I'= &/ /1. and

q/2-1
b = egs—"TYf.-T'-""“exm-T,/r-) 37
nE  JH

The outer temperature profile is expanded as in the hot-stream case
such that the boundary and matching conditions are given by

2,
6,4(0, {) =0, F)d {0, L) =0 (38)

which are identical to those in Eq. (22). The inner structure prob-
lem for the present case is locally similar, consistent with the hot-
stream case. Furthermore, all variations of {; with A and M_, are
felt through the single lumped parameter 4. Numerical solution of
Eqs. (36) and (38) shows that for a given value of I, no solution
exists beyond a critical value A,,,, which is defined as the ignition
Damkohler number. Solutions only exist for ¢ > 0, and we choose
@ = 1 to be consistent with the other cases considered earlier. In
Fig. 7, A, is plotted as s function of the I’ and is seen
to increase monotonically with I'. A useful correlation for this
curve is given by

1.141 exp(0.547T)
(39
1 +0.433 exp(- 0.756T - 0.017T")

By (M) =t [1 +

Given the value of A,,,. the ignition distance for the intermediate
case is determined from the definition of A,, in Eq. (37) as

- -1 ¢/
¢ EP 2

;I = Aml(r) Yp r-p-gqet

exp(T,/T.) (40)

in which g = 1 when the correlation (39) is used.
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Summary of Asymptotic Analysis

Equations (23), (33), and (40) now provide a complete descrip-
tion of the ignition distance over a wide range of parameters. We
remark that we have not treated the case of €(€) temperature and
velocity differences as studied by Jackson and Hussaini.? For that
limiting case, reaction occurs over the entire domain, and a full nu-
merical approach must be employed. We also note that the present
study can be extended to describe a three-step chain branching-ter-
mination mechanism proposed by Birkan and Law.'? For such a
case, in the limit of fast recombination in which the radicals are in
stead; state, the problem degenerates to that of the one-step mod-
1,412 and thus the present analysis can be readily applied.

The predicted ignition distances obtained in the analyses for the
previous three cases, togeiher with the direct numerical results, are
plotted in Fig. 8 as a function of M.,. To avoid cluttering the graph,
only the nonsimilar results are included. The curves demonstrate
how the three different cases match together to provide a global
picture for the ignition distance as a function of Mach number. The
overall agreement with the numerical results is also seen to be
quite good. For the case of A = 1, which corresponds to a uniform
paratlel flow," there is no viscous heating, and thus M., is deter-
mined by the result of the hot-stream case, Eq. (23), for all M_,. As
discussed earlier in Fig. 5, the ignition distance in this case varies
linearly with the freestream velocity. as illustrated by the top curve
in Fig. 8. For nonunity values of A, however, M..[; passes through
a maximum value and then decreases rapidly as a result of viscous
heating. Since the amount of viscous heating is proportional to M_
and the reaction rate increases exponentially with the characteristic
temperature of the reaction zone, we observe a drastic decrease of
the ignition distance.

The maximum point (M_{,)m,. of each curve in Fig. 8 may have
practical importance in the design of the scramjet engine, as it rep-
resents the most difficult situation in which to achieve ignition.
The value of (M_{))n.. can be used to evaluate the critical length
of a flame holding region that is sufficient to ensure ignition for all
Mach numbers. In holding regions of smaller dimension, it may be
necessary to vary operating conditions to achieve shorter ignition
distances. We will now discuss how the critical distance varies
with each of the system parameters.

Since this maximum point is described by the hot-stream case,
the critical ignition distance is determined from Egs. (23) and (5).

It is clear from Eq. (23) that the actual distance is most sensitive to-

variations in the hot-stream temperature 7. An increase in T, will
result in a substantial decrease in the critical ignition distance due
to the Arrhenius dependence.

To assess the effect of the two remaining relevant parameters
T_. and M_, we fix both T_ and A(< 1). Then it is convenient to
work wiih the scaled variable

r-p-g+1
yP r-¢

L= Np § = exp -7,/T.) (1)

e " Yhne
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Fig. 8 Global log-log plot of the predicted ignition distance as a func-
tion of the freestr:am Mach number for various -
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Fig. 9 Maximum ignition length in terms of the mondimensional
quantity L; defined in Eq. (41) as a function of B.

which corresponds to the properly normalized distance. It follows
from Eq. (23) that L, is a function of only two parameters, B and j,
representing T_, and M,,, respectively. For ¢ = 1, the correlation
function (24) can be used to obtain an explicit expression for L, as

LiuP=2e2Vu@ -2 -B+w1-B+p? (42

When B is fixed, L; attains a maximum at a critical value of J,
which represents the Mach number at the maximum point of each
curve in Fig. 8.

In Fig. 9 we have plotted the maximum value, L} , as a function
of B. Since L} and P both vary with T, it is necessary to hold 7,
fixed when interpreting Fig. 9. Therefore, an increase in f here im-
plies a decrease in the cold boundary temperature T_., which leads
to an increase in the heat loss from the hot boundary. Conse-
quently, ignition is more difficult to achieve, and L} is seen to in-
crease with B.

Conclusions

The thermal ignition in a supersonic mixing layer between two
streams of reactants, allowing for arhitrary differences in both ve-
locities and temperatures, has been studied numerically and as-
ymptotically. The asymptotic analysis has revealed that the reac-
tion zone structure takes different forms, depending on whether the
primary source for ignition is the hot freestream, the viscous heat-
ing generated within the shear layer, or a combination of the two.

Similar to the flat-plate case,! the ignition behavior in the mix-
ing layer is characterized by the parameter a, which is a measure
of the relative effects of the temperature difference of the two
freestreams and the amount of viscous heating. In the present mix-
ing layer situation, however, there is an additional parameter in-
volved, namely, A, which represents the velocity ratio of the slow-
er to the faster freestreams. In the subsonic limit (M, = 0), viscous
heating is negligible and an increase in A results in a small increase
ir the ignition distance. For finite values of M.., such that viscous
heating is effective, a direct comparison of the results for various
values of A is difficult because the amount of viscous heating de-
pends on both M,, and A. As a result of the combined effect of the
two parameters, the ignition distance exhibits several different
types of behavior as M_, is varied. In particular, for the hot-stream
case (a > 0), variations in A produce only higher order effects and
the ignition characteristics are structurally similar to those of a uni-
form parallel flow."! For the case of @ < 0, viscous heating is the
dominant energy source for ignition, and the point of maximum
temperature shifis to the interior of the mixing layer. Conse-
quently. variations in the flowfield at both boundaries have a sig-
nificant influence on the ignition distance.

The effects of flow nonsimilarity have also been assessed by
comparing solutions of the full system with those found by assum-
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ing local similanty in the flowfield. Nonsimilar effects are most
important when viscous heating is sufficiently large so as to cause
& temperature bulge in the interior of the mixing layer. In general,
the locally similar assumption has been found to underestimate the
ignition distance, in agreement with the results of the flat-plate
case.! It has also been demonstrated that nonsimilar effects are
more important for the mixing layer than for the flat-plate flow, in-
dicating the importance in retaining these terms in studies involv-
ing the ignition behavior of supersonic mixing layer flows.

Appendix A: Ignition at the Slow Boundary
When B < 0, ignition occurs near the slow boundary. However,
it is possible to redefine centain quantities to obtain the same lead-
ing order structure problem as in Eqs. (20-22). It is convenient to
first choose the transverse coordinate £ to be

==}
S=9=% (A1

so that ignition again occurs at £ = 0. Following the same proce-
dure as in the hot-stream case, the identical structure equation, Eq.
(20), is obtained if we redefine the variabies as

2
e=T. /T, as(T_-T_-p)/Y,_ (A2)
p-1
A= ._gt___zT_:""'exp(—Tﬂ/T__) (A3)
Aa"tne

Thus if use is made of Eq. (24) in Eq. (A3), the ignition distance is
found to be

1- -
a’e' P e

Tr-p—qu

§, = AA (0) exp(T,/T_) (A4)

which depends on an additional factor A.
For the intermediate case, lal « 1, we again use the coordinate
in Eq. (A1), and by redefining the variables

=T /T, &=T.-T.-p (AS)

we obtain the same structure equations (36) and (38). Now the re-
duced Damkdhler number is given by

/2-1 -p-
Gyl r e

At SR

A =

exp(-T,/T_) (A6)

so that, when use is made of the correlation (39) for 4,,,. the ex-
pression for the ignition distance becomes

1-p72

g, =24, ,(r)‘y

tag”'u?”?

P T"P‘Q’l

exp(T,/T_). (A7)

Appendix B: Asymptotic Behavior of f"/(1 - A)as& =0

The analysis of the hot-stream case requires the asymptotic be-
havior of f"/1 - A) as § — 0 which, from definition (13), zorre-
sponds 1o | — es. By integrating Egs. (1) and (7) near i) = oo, it can
be shown that’

2
f-n+C.w 23z, f~1-/2p Z)

f"~D_exp(-2%) (BN

where the constants of integration, C.. and D, are functions of A.
Combining the preceding formulas yields

L5 18- ®2)
where

1o 2D_ exp(-2)

R ®3)
It follows from Eq. (B3) that
e~ ="~ taz + ta [J2D_/ (1= 1)) ®4)
which, to leading order, yields
2~k (BS)
Substituting Eq. (B5) into Eq. (B2) provides the result
(&) -2~ g ®6)

that is used to derive Eq. (20). We note that the last term in Eq.
(B4) is a subdominant term and thus was eliminated in the present
leading order analysis. Consequently, the final structure equation
(20) is independent of the parameter A.

For the special case of a uniform flowfield, i.e., A = 1, the solu-
tion for the flowfield is simply f = 7 and the factor [f”/1 - A))
multiplying the diffusion term in Eq. (16) has the explicit form

1 2
ﬁexp(—m ) (B7)

1t is convenient to work in terms of the original coordinate § = erfc
(/4272 [see Eq. (13)] so that the asymptotic behavior of Eq.
(B7) near the ignition point 1, is given by

1 2 2.2
35 XP(=21) &' (B8)

where the large number 1, can be evaluated by taking the loga-
rithm of Eq. (B8), yielding

N ~2n(@2eY SR ) = 26T} = = (a6 + 2a(2/R )

- 2‘n“| ‘2tnx (39)

in terms of the inner variable % defined in the hot-stream case.
When only the leading-order term on the right-hand side of Eq.
(B9) is retained, namely, the first term, we obtain

N~ - tag? (B10)

which is consistent with our previous result Eq. (B6), whereas
Lifidn and Crespo'! retained the second term on the right-hand side
of Eg. (B9). A'though the two expressions must be asymptotically
the same in the limit € — O, in practice they can result in quite a
large difference in the predicted ignition distance as shown in
Fig. 3a.
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